Skip to main content

Advertisement

Log in

Innate immune response in systemic autoimmune diseases: a potential target of therapy

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Innate immunity refers to defense mechanisms that are always present, ready to combat microbes and other offending agents. Innate immunity acts as a first-line defense and activates the conventional immune responses; however, it has been speculated that the importance of innate immunity in initiation and development of some disorders is more than just the “first line of defense”. Autoimmune diseases, caused by immune system overactivation, are among the most challenging scientific and clinical problems, and there is still much to be learned about their pathogenesis. We aimed to provide a comprehensive overview of available documents about the role of innate immunity in systemic autoimmune diseases including rheumatoid arthritis, systemic lupus erythematosus, Sjögren’s syndrome, polymyositis, and systemic sclerosis. This study highlights the innate immunity pathways or molecules that are under investigation for therapy of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahern DJ, Brennan FM (2011) The role of natural killer cells in the pathogenesis of rheumatoid arthritis: major contributors or essential homeostatic modulators? Immunol Lett 136(2):115–121

    CAS  PubMed  Google Scholar 

  • Ainola M, Porola P, Takakubo Y, Przybyla B, Kouri V, Tolvanen T et al (2018) Activation of plasmacytoid dendritic cells by apoptotic particles–mechanism for the loss of immunological tolerance in Sjögren's syndrome. Clin Exp Immunol 191(3):301–310

    CAS  PubMed  Google Scholar 

  • Alves CM, Marzocchi-Machado CM, Louzada-Junior P, Azzolini AEC, Polizello ACM, De Carvalho IF, Lucisano-Valim YM (2008) Superoxide anion production by neutrophils is associated with prevalent clinical manifestations in systemic lupus erythematosus. Clin Rheumatol 27(6):701–708

    PubMed  Google Scholar 

  • Apel F, Zychlinsky A, Kenny EF (2018) The role of neutrophil extracellular traps in rheumatic diseases. Nat Rev Rheumatol 14(8):467–475

    CAS  PubMed  Google Scholar 

  • Arahata K, Engel AG (1986) Monoclonal antibody analysis of mononuclear cells in myopathies. III: Immunoelectron microscopy aspects of cell-mediated muscle fiber injury. Ann Neurol 19(2):112–125

    CAS  PubMed  Google Scholar 

  • Artlett CM, Sassi-Gaha S, Rieger JL, Boesteanu AC, Feghali-Bostwick CA, Katsikis PD (2011) The inflammasome activating caspase 1 mediates fibrosis and myofibroblast differentiation in systemic sclerosis. Arthritis Rheum 63(11):3563–3574. https://doi.org/10.1002/art.30568

    Article  CAS  PubMed  Google Scholar 

  • Assi LK, Wong SH, Ludwig A, Raza K, Gordon C, Salmon M et al (2007) Tumor necrosis factor α activates release of B lymphocyte stimulator by neutrophils infiltrating the rheumatoid joint. Arthritis Rheum 56(6):1776–1786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baban B, Liu JY, Abdelsayed R, Mozaffari MS (2013) Reciprocal relation between GADD153 and Del-1 in regulation of salivary gland inflammation in Sjögren syndrome. Exp Mol Pathol 95(3):288–297

    CAS  PubMed  Google Scholar 

  • Bach M, Moon J, Moore R, Pan T, Nelson JL, Lood C (2020) A neutrophil activation biomarker panel in prognosis and monitoring of patients with rheumatoid arthritis. Arthritis Rheumatol 72(1):47–56

    CAS  PubMed  Google Scholar 

  • Behrens L, Bender A, Johnson MA, Hohlfeld R (1997) Cytotoxic mechanisms in inflammatory myopathies. Co-expression of Fas and protective Bcl-2 in muscle fibres and inflammatory cells. Brain J Neurol 120(6):929–938

    Google Scholar 

  • Behrens L, Kerschensteiner M, Misgeld T, Goebels N, Wekerle H, Hohlfeld R (1998) Human muscle cells express a functional costimulatory molecule distinct from B7.1 (CD80) and B7.2 (CD86) in vitro and in inflammatory lesions. J Immunol 161(11):5943–5951

    CAS  PubMed  Google Scholar 

  • Boisen AF, Rasmussen EB, Kragstrup TW (2019) AB0069 the downstream effect of adalimumab involves inhibition of synovial cxcl subfamily chemokine expression. Ann Rheum Dis 78:1498–1499

  • Bombardieri M, Pitzalis C (2012) Ectopic lymphoid neogenesis and lymphoid chemokines in Sjogren's syndrome: at the interplay between chronic inflammation, autoimmunity and lymphomagenesis. Curr Pharm Biotechnol 13(10):1989–1996

    CAS  PubMed  Google Scholar 

  • Brkic Z, Maria NI, van Helden-Meeuwsen CG, van de Merwe JP, van Daele PL, Dalm VA et al (2013) Prevalence of interferon type I signature in CD14 monocytes of patients with Sjögren's syndrome and association with disease activity and BAFF gene expression. Ann Rheum Dis 72(5):728–735

    CAS  PubMed  Google Scholar 

  • Carmona-Rivera C, Kaplan MJ (2013) Low-density granulocytes: a distinct class of neutrophils in systemic autoimmunity. Semin Immunopathol 35(4):455–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carmona-Rivera C, Carlucci PM, Moore E, Lingampalli N, Uchtenhagen H, James E et al (2017) Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Sci Immunol 2(10):eaag3358

    PubMed  PubMed Central  Google Scholar 

  • Catrina AI, Lampa J, Ernestam S, Af Klint E, Bratt J, Klareskog L, Ulfgren AK (2002) Anti-tumour necrosis factor (TNF)-α therapy (etanercept) down-regulates serum matrix metalloproteinase (MMP)-3 and MMP-1 in rheumatoid arthritis. Rheumatology 41(5):484–489. https://doi.org/10.1093/rheumatology/41.5.484%JRheumatology

    Article  CAS  PubMed  Google Scholar 

  • Chaichian Y, Wallace DJ, Weisman MH (2019) A promising approach to targeting type 1 IFN in systemic lupus erythematosus. J Clin Invest 129(3):958–961

    PubMed  PubMed Central  Google Scholar 

  • Chalmers SA, Chitu V, Ramanujam M, Putterman C (2015) Therapeutic targeting of macrophages in lupus nephritis. Discov Med 20(108):43–49

    PubMed  Google Scholar 

  • Charles N, Hardwick D, Daugas E, Illei GG, Rivera J (2010) Basophils and the T helper 2 environment can promote the development of lupus nephritis. Nat Med 16(6):701

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Wu M, Wang J, Li X (2015) Immunoregulation of NKT cells in systemic lupus erythematosus. J Immunol Res 2015:206731

    PubMed  PubMed Central  Google Scholar 

  • Chen W, Wang Q, Ke Y, Lin J (2018) Neutrophil function in an inflammatory milieu of rheumatoid arthritis. J Immunol Res 2018:8549329

    PubMed  PubMed Central  Google Scholar 

  • Cho Y-N, Kee S-J, Lee S-J, Seo S-R, Kim T-J, Lee S-S et al (2011) Numerical and functional deficiencies of natural killer T cells in systemic lupus erythematosus: their deficiency related to disease activity. Rheumatology 50(6):1054–1063

    CAS  PubMed  Google Scholar 

  • Ciechomska M, Cant R, Finnigan J, van Laar JM, O'Reilly S (2013) Role of toll-like receptors in systemic sclerosis. Expert Rev Mol Med 15:e9

    PubMed  Google Scholar 

  • Ciechomska M, Huigens CA, Hügle T, Stanly T, Gessner A, Griffiths B et al (2013b) Toll-like receptor-mediated, enhanced production of profibrotic TIMP-1 in monocytes from patients with systemic sclerosis: role of serum factors. Ann Rheum Dis 72(8):1382–1389. https://doi.org/10.1136/annrheumdis-2012-201958

    Article  CAS  PubMed  Google Scholar 

  • Croia C, Bursi R, Sutera D, Petrelli F, Alunno A, Puxeddu I (2019) One year in review 2019: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol 37:347–357

    PubMed  Google Scholar 

  • Cunnane G, Madigan A, Murphy E, FitzGerald O, Bresnihan BJR (2001) The effects of treatment with interleukin-1 receptor antagonist on the inflamed synovial membrane in rheumatoid arthritis. Rheumatology 40(1):62–69

    CAS  PubMed  Google Scholar 

  • Dalakas MC (1991) Polymyositis, dermatomyositis, and inclusion-body myositis. N Engl J Med 325(21):1487–1498

    CAS  PubMed  Google Scholar 

  • Dalakas MC, Hohlfeld R (2003) Polymyositis and dermatomyositis. Lancet 362(9388):971–982. https://doi.org/10.1016/S0140-6736(03)14368-1

    Article  CAS  PubMed  Google Scholar 

  • Pongratz D (2006) Therapeutic options in autoimmune inflammatory myopathies (dermatomyositis, polymyositis, inclusion body myositis). J Neurol 253:v64–v65

    PubMed  Google Scholar 

  • De Bleecker JL, De Paepe B, Vanwalleghem IE, Schröder JM (2002) Differential expression of chemokines in inflammatory myopathies. Neurology 58(12):1779–1785

    PubMed  Google Scholar 

  • Dema B, Charles N (2014) Advances in mechanisms of systemic lupus erythematosus. Discov Med 17(95):247–255

    PubMed  Google Scholar 

  • Deshmukh US, Nandula SR, Thimmalapura PR, Scindia YM, Bagavant H (2009) Activation of innate immune responses through Toll-like receptor 3 causes a rapid loss of salivary gland function. J Oral Pathol Med 38(1):42–47

    PubMed  PubMed Central  Google Scholar 

  • Dijkstra DJ, Joeloemsingh JV, Bajema IM, Trouw LA (2019) Complement activation and regulation in rheumatic disease. Semin Immunol 45:101339

    CAS  PubMed  Google Scholar 

  • Dörner T, Weinblatt M, Van Beneden K, Dombrecht E, De Beuf K, Schoen P, Zeldin RK (2017) FRI0239 Results of a phase 2b study of vobarilizumab, an anti-interleukin-6 receptor nanobody, as monotherapy in patients with moderate to severe rheumatoid arthritis. Ann Rheum Dis 76:575

    Google Scholar 

  • Dowson C, Simpson N, Duffy L, O'Reilly S (2017) Innate immunity in systemic sclerosis. Curr Rheumatol Rep 19(1):2. https://doi.org/10.1007/s11926-017-0630-3

    Article  CAS  PubMed  Google Scholar 

  • Duffy L, O'Reilly SC (2016) Toll-like receptors in the pathogenesis of autoimmune diseases: recent and emerging translational developments. ImmunoTargets Therapy 5:69–80. https://doi.org/10.2147/ITT.S89795

    Article  CAS  PubMed  Google Scholar 

  • Eloranta M-L, Barbasso Helmers S, Ulfgren A-K, Rönnblom L, Alm GV, Lundberg IE (2007) A possible mechanism for endogenous activation of the type I interferon system in myositis patients with anti-Jo-1 or anti-Ro 52/anti-Ro 60 autoantibodies. Arthritis Rheum 56(9):3112–3124. https://doi.org/10.1002/art.22860

    Article  CAS  PubMed  Google Scholar 

  • Eng GP, Bouchelouche P, Bartels EM, Bliddal H, Bendtzen K, Stoltenberg MJPO (2016) Anti-drug antibodies, drug levels, interleukin-6 and soluble TNF receptors in rheumatoid arthritis patients during the first 6 months of treatment with adalimumab or infliximab: a descriptive cohort study. PLoS One 11(9):e0162316

    PubMed  PubMed Central  Google Scholar 

  • Estrada-Capetillo L, Hernández-Castro B, Monsiváis-Urenda A, Alvarez-Quiroga C, Layseca-Espinosa E, Abud-Mendoza C et al (2013) Induction of Th17 lymphocytes and Treg cells by monocyte-derived dendritic cells in patients with rheumatoid arthritis and systemic lupus erythematosus. Clin Dev Immunol 2013:584303

    PubMed  PubMed Central  Google Scholar 

  • Fang F, Marangoni RG, Zhou X, Yang Y, Ye B, Shangguang A et al (2016) Toll-like receptor 9 signaling is augmented in systemic sclerosis and elicits transforming growth factor beta-dependent fibroblast activation. Arthritis Rheumatol 68(8):1989–2002. https://doi.org/10.1002/art.39655

    Article  CAS  PubMed  Google Scholar 

  • FDA (2008) Certolizumab pegol label information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/125160s000lbl.pdf. Accessed 18 Apr 2008

  • Felten R, Dervovic E, Chasset F, Gottenberg J-E, Sibilia J, Scher F, Arnaud LJAR (2018) The 2018 pipeline of targeted therapies under clinical development for systemic lupus erythematosus: a systematic review of trials. Autoimmunity Rev 17(8):781–790

    Google Scholar 

  • Felten R, Scher F, Sibilia J, Chasset F, Arnaud LJJBS (2019) Advances in the treatment of systemic lupus erythematosus: from back to the future, to the future and beyond. Joint Bone Spine 86(4):429–436

    CAS  PubMed  Google Scholar 

  • Fogel LA, Yokoyama WM, French AR (2013) Natural killer cells in human autoimmune disorders. Arthritis Res Ther 15(4):216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fogel O, Rivière E, Seror R, Nocturne G, Boudaoud S, Ly B et al (2018) Role of the IL-12/IL-35 balance in patients with Sjögren syndrome. J Allergy Clin Immunol 142(1):258–268

    CAS  PubMed  Google Scholar 

  • Food and Drug Administration (2009) Golimumab pegol label information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/125289s000lbl.pdf. Accessed 20 Mar 2009

  • Fridkis-Hareli M (2008) Immunogenetic mechanisms for the coexistence of organ-specific and systemic autoimmune diseases. J Autoimmune Dis 5(1):1

    PubMed  PubMed Central  Google Scholar 

  • Frizinsky S, Haj-Yahia S, Maayan DM, Lifshitz Y, Maoz-Segal R, Offengenden I et al (2019) The innate immune perspective of autoimmune and autoinflammatory conditions. Rheumatology 58(6):1–8

    Google Scholar 

  • Gandolfo S, De Vita SJE (2019) Emerging drugs for primary Sjögren’s syndrome. Expert Opin Emerg Drugs 24(2):121–132

    PubMed  Google Scholar 

  • Gillooly K, Zhang Y, Yang X, Zupa-Fernandez A, Cheng L, Strnad J et al (2016) BMS-986165 is a highly potent and selective allosteric inhibitor of Tyk2, blocks IL-12, IL-23 and type I interferon signaling and provides for robust efficacy in preclinical models of systemic lupus erythematosus and inflammatory bowel disease [abstract]. Arthritis Rheumatol  68 (suppl 10)

  • Gudbjörnsson B, Feltelius N, Hällgren R, Venge P (1991) Neutrophil function in patients with primary Sjögren's syndrome: relation to infection propensity. Ann Rheum Dis 50(10):685–690

    PubMed  PubMed Central  Google Scholar 

  • Gupta S, Kaplan MJ (2016) The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol 12(7):402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harris HE, Andersson U, Pisetsky DS (2012) HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat Rev Rheumatol 8(4):195–202. https://doi.org/10.1038/nrrheum.2011.222

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Molina G, Michel-Peregrina M, Hernández-Ramírez DF, Sánchez-Guerrero J, Llorente L (2011) Chemokine saliva levels in patients with primary Sjögren’s syndrome, associated Sjögren’s syndrome, pre-clinical Sjögren’s syndrome and systemic autoimmune diseases. Rheumatology 50(7):1288–1292

    PubMed  Google Scholar 

  • Herrada AA, Escobedo N, Iruretagoyena M, Valenzuela RA, Burgos PI, Cuitino L, Llanos C (2019) Innate immune cells' contribution to systemic lupus erythematosus. Front Immunol 10:772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hervier B, Beziat V, Haroche J, Mathian A, Lebon P, Ghillani-Dalbin P et al (2011) Phenotype and function of natural killer cells in systemic lupus erythematosus: excess interferon-γ production in patients with active disease. Arthritis Rheum 63(6):1698–1706

    CAS  PubMed  Google Scholar 

  • Higashi-Kuwata N, Jinnin M, Makino T, Fukushima S, Inoue Y, Muchemwa FC et al (2010) Characterization of monocyte/macrophage subsets in the skin and peripheral blood derived from patients with systemic sclerosis. Arthritis Res Ther 12(4):R128–R128. https://doi.org/10.1186/ar3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilchie AL, Wuerth K, Hancock RE (2013) Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol 9(12):761

    CAS  PubMed  Google Scholar 

  • Hill CL, Zhang Y, Sigurgeirsson B, Pukkala E, Mellemkjaer L, Airio A et al (2001) Frequency of specific cancer types in dermatomyositis and polymyositis: a population-based study. Lancet 357(9250):96–100

    CAS  PubMed  Google Scholar 

  • Hillen MR, Pandit A, Blokland SL, Hartgring SA, Bekker CP, van der Heijden EH et al (2019) Plasmacytoid DCs from patients with Sjögren's syndrome are transcriptionally primed for enhanced pro-inflammatory cytokine production. Front Immunol 10:2096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hilton-Jones D (2011) Observations on the classification of the inflammatory myopathies. Presse Med 40(4):e199–e208

    PubMed  Google Scholar 

  • Huang Z, Fu B, Zheng SG, Li X, Sun R, Tian Z, Wei H (2011) Involvement of CD226+ NK cells in immunopathogenesis of systemic lupus erythematosus. J Immunol 186(6):3421–3431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hügle T (2014) Beyond allergy: the role of mast cells in fibrosis. Swiss Med Weekly 144:w13999

    Google Scholar 

  • Hugle T, White K, van Laar JM (2012) Cell-to-cell contact of activated mast cells with fibroblasts and lymphocytes in systemic sclerosis. Ann Rheum Dis 71(9):1582. https://doi.org/10.1136/annrheumdis-2011-200809

    Article  PubMed  Google Scholar 

  • Huizinga TW, Fleischmann RM, Jasson M, Radin AR, van Adelsberg J, Fiore S et al (2014) Sarilumab, a fully human monoclonal antibody against IL-6Rα in patients with rheumatoid arthritis and an inadequate response to methotrexate: efficacy and safety results from the randomised SARIL-RA-MOBILITY Part A trial. Ann Rheumatic Diseases 73(9):1626–1634

    CAS  Google Scholar 

  • Hunter CA, Jones SA (2015) IL-6 as a keystone cytokine in health and disease. Nat Immunol 16(5):448–457

    CAS  PubMed  Google Scholar 

  • Hussein MR, Hassan HI, Hofny ER, Elkholy M, Fatehy NA, Abd Elmoniem AE et al (2005) Alterations of mononuclear inflammatory cells, CD4/CD8+ T cells, interleukin 1beta, and tumour necrosis factor alpha in the bronchoalveolar lavage fluid, peripheral blood, and skin of patients with systemic sclerosis. J Clin Pathol 58(2):178–184. https://doi.org/10.1136/jcp.2004.019224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikari Y, Isozaki T, Tsubokura Y, Kasama TJC (2019) Peficitinib inhibits the chemotactic activity of monocytes via proinflammatory cytokine production in rheumatoid arthritis fibroblast-like synoviocytes. Cells 8(6):561

    CAS  PubMed Central  Google Scholar 

  • Iwamoto N, Sato S, Sumiyoshi R, Chiba K, Miyamoto N, Arinaga K et al (2019) Comparative study of the inhibitory effect on bone erosion progression with denosumab treatment and conventional treatment in rheumatoid arthritis patients: study protocol for an open-label randomized controlled trial by HR-pQCT. Trials 20(1):1–8

    CAS  Google Scholar 

  • Izumi Y, Ida H, Huang M, Iwanaga N, Tanaka F, Aratake K et al (2006) Characterization of peripheral natural killer cells in primary Sjögren’s syndrome: impaired NK cell activity and low NK cell number. J Lab Clin Med 147(5):242–249

    CAS  PubMed  Google Scholar 

  • Jiang H, Gao H, Wang Q, Wang M, Wu BJB (2020) Molecular mechanisms and clinical application of Iguratimod: a review. Biomed Pharmacother 122:109704

    PubMed  Google Scholar 

  • Kahlenberg JM, Kaplan MJ (2013) Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease. J Immunol 191(10):4895–4901

    CAS  PubMed  Google Scholar 

  • Karonitsch T, Beckmann D, Dalwigk K, Niederreiter B, Studenic P, Byrne RA et al (2018) Targeted inhibition of Janus kinases abates interfon gamma-induced invasive behaviour of fibroblast-like synoviocytes. Rheumatology 57(3):572–577

    CAS  PubMed  Google Scholar 

  • Kennedy A, Fearon U, Veale DJ, Godson C (2011) Macrophages in synovial inflammation. Front Immunol 2:52

    PubMed  PubMed Central  Google Scholar 

  • Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S, Knight JS et al (2013) NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med 5(178):178ra140

    Google Scholar 

  • Kim HJ, Song SB, Choi JM, Kim KM, Cho BK, Cho DH, Park HJ (2010) IL-18 downregulates collagen production in human dermal fibroblasts via the ERK pathway. J Invest Dermatol 130(3):706–715. https://doi.org/10.1038/jid.2009.302

    Article  CAS  PubMed  Google Scholar 

  • Kiripolsky J, McCabe LG, Kramer JM (2017) Innate immunity in Sjögren's syndrome. Clin Immunol 182:4–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klavdianou K, Lazarini A, Fanouriakis AJB (2020) Targeted biologic therapy for systemic lupus erythematosus: emerging pathways and drug pipeline. BioDrugs 34(2):133–147

    CAS  PubMed  Google Scholar 

  • Kumamoto T, Ueyama H, Fujimoto S, Nagao S, Tsuda T (1996) Clinicopathologic characteristics of polymyositis patients with numerous tissue eosinophils. Acta Neurol Scand 94(2):110–114. https://doi.org/10.1111/j.1600-0404.1996.tb07039.x

    Article  CAS  PubMed  Google Scholar 

  • Kurowska W, Kuca-Warnawin EH, Radzikowska A, Maśliński W (2017) The role of anti-citrullinated protein antibodies (ACPA) in the pathogenesis of rheumatoid arthritis. Central-Eur J Immunol 42(4):390

    CAS  Google Scholar 

  • Labonte AC, Tosello-Trampont A-C, Hahn YS (2014) The role of macrophage polarization in infectious and inflammatory diseases. Mol Cells 37(4):275

    PubMed  PubMed Central  Google Scholar 

  • Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J et al (2011) Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA–peptide complexes in systemic lupus erythematosus. Sci Transl Med 3(73):73ra19

    PubMed  PubMed Central  Google Scholar 

  • Lebre MC, Jongbloed SL, Tas SW, Smeets TJ, McInnes IB, Tak PP (2008) Rheumatoid arthritis synovium contains two subsets of CD83-DC-LAMP-dendritic cells with distinct cytokine profiles. Am J Pathol 172(4):940–950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Yang Y, Zhu X, Huang L, Xu J (2015) Macrophage polarization modulates development of systemic lupus erythematosus. Cell Physiol Biochem 37(4):1279–1288

    CAS  PubMed  Google Scholar 

  • Lin S-J, Kuo M-L, Hsiao H-S, Lee P-T, Chen J-Y, Huang J-L (2017) Activating and inhibitory receptors on natural killer cells in patients with systemic lupus erythematosis-regulation with interleukin-15. PLoS One 12(10):e0186223

    PubMed  PubMed Central  Google Scholar 

  • Lin E, Vincent FB, Sahhar J, Ngian G-S, Kandane-Rathnayake R, Mende R et al (2019) Analysis of serum interleukin(IL)-1α, IL-1β and IL-18 in patients with systemic sclerosis. Clin Transl Immunol 8(4):e1045. https://doi.org/10.1002/cti2.1045

    Article  CAS  Google Scholar 

  • Lisi S, Sisto M, Lofrumento DD, D’Amore M (2012) Altered IkBα expression promotes NF-kB activation in monocytes from primary Sjögren’s syndrome patients. Pathology 44(6):557–561

    CAS  PubMed  Google Scholar 

  • López-Cacho JM, Gallardo S, Posada M, Aguerri M, Calzada D, Mayayo T et al (2014) Association of immunological cell profiles with specific clinical phenotypes of scleroderma disease. Biomed Res Int 2014:148293. https://doi.org/10.1155/2014/148293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Low HZ, Witte T (2011) Aspects of innate immunity in Sjögren's syndrome. Arthritis Res Ther 13(3):218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Tang Q, Lindh M, Dastmalchi M, Alexanderson H, Popovic Silwerfeldt K et al (2017) The host defense peptide LL-37 a possible inducer of the type I interferon system in patients with polymyositis and dermatomyositis. J Autoimmun 78:46–56. https://doi.org/10.1016/j.jaut.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  • Lucchino B, Spinelli FR, Iannuccelli C, Guzzo MP, Conti F, Franco MD (2019) Mucosa-environment interactions in the pathogenesis of rheumatoid arthritis. Cells 8(7):700

    CAS  PubMed Central  Google Scholar 

  • Ma C, Xia Y, Yang Q, Zhao Y (2019) The contribution of macrophages to systemic lupus erythematosus. Clin Immunol 207:1–9

    CAS  PubMed  Google Scholar 

  • Ma W-T, Gao F, Gu K, Chen D-K (2019) The role of monocytes and macrophages in autoimmune diseases: a comprehensive review. Front Immunol 10:1140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mackern-Oberti JP, Llanos C, Riedel CA, Bueno SM, Kalergis AM (2015) Contribution of dendritic cells to the autoimmune pathology of systemic lupus erythematosus. Immunology 146(4):497–507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malladi AS, Sack KE, Shiboski SC, Shiboski CH, Baer AN, Banushree R et al (2012) Primary Sjögren's syndrome as a systemic disease: a study of participants enrolled in an international Sjögren's syndrome registry. Arthritis Care Res 64(6):911–918

    Google Scholar 

  • Manoussakis MN, Kapsogeorgou EK (2007) The role of epithelial cells in the pathogenesis of Sjögren’s syndrome. Clin Rev Allergy Immunol 32(3):225–230

    CAS  PubMed  Google Scholar 

  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686

    CAS  PubMed  Google Scholar 

  • Markiewski MM, Lambris JD (2007) The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol 171(3):715–727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell 10(2):417–426

    CAS  PubMed  Google Scholar 

  • Marzaioli V, Canavan M, Floudas A, Wade S, Low C, Veale D, Fearon U (2019) P067 Tofacitinib impairs monocyte-derived dendritic cell differentiation in rheumatoid arthritisand psoriatic arthritis. Ann Rheum Dis 78:A28

    Google Scholar 

  • Mavragani CP, Moutsopoulos HMJJA (2019) Sjögren's syndrome: old and new therapeutic targets. J Autoimmun 110:102364

    PubMed  Google Scholar 

  • Min HK, Kim K-W, Lee S-H, Kim H-R (2020) Roles of mast cells in rheumatoid arthritis. Korean J Internal Med 35(1):12

    CAS  Google Scholar 

  • Mitchell TS, Moots RJ, Wright HL (2017) Janus kinase inhibitors prevent migration of rheumatoid arthritis neutrophils towards interleukin-8, but do not inhibit priming of the respiratory burst or reactive oxygen species production. Clin Exp Immunol 189(2):250–258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitoma H, Horiuchi T, Tsukamoto H, Tamimoto Y, Kimoto Y, Uchino A (2008) Mechanisms for cytotoxic effects of anti-tumor necrosis factor agents on transmembrane tumor necrosis factor α-expressing cells: comparison among infliximab, etanercept, and adalimumab. Arthritis Rheum 58(5):1248–1257

    CAS  PubMed  Google Scholar 

  • Mohamed MEF, Beck D, Camp HS, Othman AAJ (2020) Preferential inhibition of JAK1 relative to JAK3 by upadacitinib: exposure-response analyses of ex vivo data from 2 phase 1 clinical trials and comparison to tofacitinib. J Clin Pharmacol 60(2):188–197

    CAS  PubMed  Google Scholar 

  • Mok MY (2015) Tolerogenic dendritic cells: role and therapeutic implications in systemic lupus erythematosus. Int J Rheumatic Dis 18(2):250–259

    CAS  Google Scholar 

  • Nesbitt A, Fossati G, Bergin M, Stephens P, Stephens S, Foulkes R et al (2007) Mechanism of action of certolizumab pegol (CDP870): in vitro comparison with other anti-tumor necrosis factor α agents. Inflamm Bowel Dis 13(11):1323–1332

    PubMed  Google Scholar 

  • Nesbitt A, Lamour S, Bracher MJ (2009) PEG component of certolizumab pegol inhibits stimulated mast cell degranulation. Am J Gastroenterol 104:S444

    Google Scholar 

  • NIH (2020) Efficacy and safety study of p144 to treat skin fibrosis in systemic sclerosis. https://ClinicalTrials.gov/show/NCT00574613. Accessed 11 Feb 2013

  • NIH (2020) Fresolimumab in systemic sclerosis. https://ClinicalTrials.gov/show/NCT01284322. Accessed 16 July 2014

  • NIH (2020) Imatinib mesylate (Gleevec) in the treatment of systemic sclerosis. https://ClinicalTrials.gov/show/NCT00555581. Accessed 6 Feb 2018

  • NIH (2020) Nilotinib in the treatment of systemic sclerosis. https://ClinicalTrials.gov/show/NCT01166139. Accessed 4 Oct 2017

  • NIH (2020) A phase 1 study of MEDI7734 in type I interferon-mediated autoimmune diseases. https://ClinicalTrials.gov/show/NCT02780674. Accessed 21 Dec 2018

  • NIH (2020) Proof of biological activity of SAR100842 in systemic sclerosis. https://ClinicalTrials.gov/show/NCT01651143. Accessed 25 Mar 2016

  • NIH (2020) Safety evaluation of dasatinib in subjects with scleroderma pulmonary fibrosis. https://ClinicalTrials.gov/show/NCT00764309. Accessed 29 Feb 2012

  • NIH (2020) Safety, tolerability, and pharmacokinetics of CAT-192 (human anti-TGF-beta1 monoclonal antibody) in patients with early stage diffuse systemic sclerosis. https://ClinicalTrials.gov/show/NCT00043706. Accessed 5 Mar 2015

  • NIH (2020) Study of iguratimod in Sjögren's syndrome. https://ClinicalTrials.gov/show/NCT03023592. Accessed 18 Jan 2017

  • NIH (2020) A Study of RoActemra/Actemra (Tocilizumab) versus placebo in patients with systemic sclerosis. https://ClinicalTrials.gov/show/NCT01532869. Accessed 23 Sept 2016

  • NIH (2020) A study to evaluate safety and tolerability of multiple doses of MEDI-546 in adult subjects with scleroderma. https://ClinicalTrials.gov/show/NCT00930683. Accessed 8 May 2012

  • NIH (2020) A trial to compare nintedanib with placebo for patients with scleroderma related lung fibrosis. https://ClinicalTrials.gov/show/NCT02597933. Accessed 13 Dec 2019

  • O’Neil LJ, Kaplan MJ (2019) Neutrophils in rheumatoid arthritis: breaking immune tolerance and fueling disease. Trends Mol Med 25(3):215–227

    PubMed  Google Scholar 

  • Ohta S, Tsuru T, Terao K, Mogi S, Suzaki M, Shono E et al (2014) Mechanism-based approach using a biomarker response to evaluate tocilizumab subcutaneous injection in patients with rheumatoid arthritis with an inadequate response to synthetic DMARDs (MATSURI study). J Clin Pharmacol 54(1):109–119

    CAS  PubMed  Google Scholar 

  • Okrój M, Johansson M, Saxne T, Blom AM, Hesselstrand R (2016) Analysis of complement biomarkers in systemic sclerosis indicates a distinct pattern in scleroderma renal crisis. Arthritis Res Ther 18(1):267–267. https://doi.org/10.1186/s13075-016-1168-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oon S, Wilson NJ, Wicks IJ (2016) Targeted therapeutics in SLE: emerging strategies to modulate the interferon pathway. Clin Transl Immunol 5(5):e79

    Google Scholar 

  • O'Reilly S, Hugle T, van Laar JM (2012) T cells in systemic sclerosis: a reappraisal. Rheumatology (Oxford) 51(9):1540–1549. https://doi.org/10.1093/rheumatology/kes090

    Article  CAS  Google Scholar 

  • O'Reilly S, Cant R, Ciechomska M, Finnigan J, Oakley F, Hambleton S, van Laar JM (2014a) Serum amyloid A induces interleukin-6 in dermal fibroblasts via Toll-like receptor 2, interleukin-1 receptor-associated kinase 4 and nuclear factor-κB. Immunology 143(3):331–340. https://doi.org/10.1111/imm.12260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Reilly S, Ciechomska M, Cant R, van Laar JM (2014b) Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-β (TGF-β) signaling promoting SMAD3 activation and fibrosis via Gremlin protein. J Biol Chem 289(14):9952–9960. https://doi.org/10.1074/jbc.M113.545822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozaki Y, Ito T, Son Y, Amuro H, Shimamoto K, Sugimoto H et al (2010) Decrease of blood dendritic cells and increase of tissue-infiltrating dendritic cells are involved in the induction of Sjögren's syndrome but not in the maintenance. Clin Exp Immunol 159(3):315–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pabón-Porras MA, Molina-Ríos S, Flórez-Suárez JB, Coral-Alvarado PX, Méndez-Patarroyo P, Quintana-López G (2019) Rheumatoid arthritis and systemic lupus erythematosus: pathophysiological mechanisms related to innate immune system. SAGE Open Med 7:2050312119876146

    Google Scholar 

  • Pan HF, Wang J, Leng RX, Li XP, Ye DQ (2011) Interleukin-18: friend or foe for systemic sclerosis? J Invest Dermatol 131(12):2495. https://doi.org/10.1038/jid.2011.224 (author reply 2496-2497)

    Article  CAS  PubMed  Google Scholar 

  • Pan Q, Feng Y, Peng Y, Zhou H, Deng Z, Li L et al (2017) Basophil recruitment to skin lesions of patients with systemic lupus erythematosus mediated by CCR1 and CCR2. Cell Physiol Biochem 43(2):832–839

    CAS  PubMed  Google Scholar 

  • Paoliello-Paschoalato AB, Marchi LF, Andrade MF, Kabeya LM, Donadi EA, Lucisano-Valim YM (2015) Fcγ and complement receptors and complement proteins in neutrophil activation in rheumatoid arthritis: contribution to pathogenesis and progression and modulation by natural products. Evidence-Based Complem Alternat Med eCAM 2015:429878

    Google Scholar 

  • Pasoto SG, de Oliveira Martins VA, Bonfa E (2019) Sjögren’s syndrome and systemic lupus erythematosus: links and risks. Open Access Rheumatol 11:33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pattanaik D, Brown M, Postlethwaite BC, Postlethwaite AE (2015) Pathogenesis of systemic sclerosis. Front Immunol. https://doi.org/10.3389/fimmu.2015.00272

    Article  PubMed  PubMed Central  Google Scholar 

  • Pellefigues C, Dema B, Lamri Y, Saidoune F, Chavarot N, Lohéac C et al (2018) Prostaglandin D 2 amplifies lupus disease through basophil accumulation in lymphoid organs. Nat Commun 9(1):725

    PubMed  PubMed Central  Google Scholar 

  • Pentony P, Duquenne L, Dutton K, Mankia K, Gul H, Vital E, Emery P (2017) The initiation of autoimmunity at epithelial surfaces: a focus on rheumatoid arthritis and systemic lupus erythematosus. Discov Med 24(133):191–200

    PubMed  Google Scholar 

  • Pohlmeyer C, Cui Z-H, Han P, Clarke A, Jones R, Mollova N et al (2018) AB0484 Monotherapy with filgotinib, a jak1-selective inhibitor, reduces disease severity and alters immune cell subsets in the nzb/w f1 murine model of lupus. Ann Rheum Dis 77:1403

    Google Scholar 

  • Pozsgay J, Szekanecz Z, Sármay G (2017) Antigen-specific immunotherapies in rheumatic diseases. Nat Rev Rheumatol 13(9):525

    CAS  PubMed  Google Scholar 

  • Rana AK, Li Y, Dang Q, Yang F (2018) Monocytes in rheumatoid arthritis: circulating precursors of macrophages and osteoclasts and their heterogeneity and plasticity role in RA pathogenesis. Int Immunopharmacol 65:348–359

    CAS  PubMed  Google Scholar 

  • Rivellese F, Mauro D, Nerviani A, Pagani S, Fossati-Jimack L, Messemaker T et al (2018) Mast cells in early rheumatoid arthritis associate with disease severity and support B cell autoantibody production. Ann Rheum Dis 77(12):1773–1781

    CAS  PubMed  Google Scholar 

  • Rizzo C, La Barbera L, Lo Pizzo M, Ciccia F, Sireci G, Guggino G (2019) Invariant NKT cells and rheumatic disease: focus on primary Sjogren syndrome. Int J Mol Sci 20(21):5435

    CAS  PubMed Central  Google Scholar 

  • Ronnblom L, Alm GV (2001) An etiopathogenic role for the type I IFN system in SLE. Trends Immunol 22(8):427–431

    CAS  PubMed  Google Scholar 

  • Rowland SL, Riggs JM, Gilfillan S, Bugatti M, Vermi W, Kolbeck R et al (2014) Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model. J Exp Med 211(10):1977–1991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rusakiewicz S, Nocturne G, Lazure T, Semeraro M, Flament C, Caillat-Zucman S et al (2013) NCR3/NKp30 contributes to pathogenesis in primary Sjögren’s syndrome. Sci Transl Med 5(195):195ra196

    Google Scholar 

  • Sambataro D, Sambataro G, Dal Bosco Y, Polosa RJ (2017) Present and future of biologic drugs in primary Sjögren’s syndrome. Expert Opin Biol Therapy 17(1):63–75

    CAS  Google Scholar 

  • Scala E, Pallotta S, Frezzolini A, Abeni D, Barbieri C, Sampogna F et al (2004) Cytokine and chemokine levels in systemic sclerosis: relationship with cutaneous and internal organ involvement. Clin Exp Immunol 138(3):540–546. https://doi.org/10.1111/j.1365-2249.2004.02642.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scambi C, La Verde V, De Franceschi L, Barausse G, Poli F, Benedetti F et al (2010) Comparative proteomic analysis of serum from patients with systemic sclerosis and sclerodermatous GVHD. Evidence of defective function of factor H. PLoS One 5(8):e12162. https://doi.org/10.1371/journal.pone.0012162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamim EA, Rider LG, Miller FW (2000) Update on the genetics of the idiopathic inflammatory myopathies. Curr Opin Rheumatol 12(6):482–491

    CAS  PubMed  Google Scholar 

  • Shealy DJ et al (2010) Characterization of golimumab, a human monoclonal antibody specific for human tumor necrosis factor α. mAbs 2:428–439

    PubMed  Google Scholar 

  • Sierra-Sepúlveda A, Esquinca-González A, Benavides-Suárez SA, Sordo-Lima DE, Caballero-Islas AE, Cabral-Castañeda AR, Rodríguez-Reyna TS (2019) Systemic sclerosis pathogenesis and emerging therapies, beyond the fibroblast. Biomed Res Int 2019:4569826

    PubMed  PubMed Central  Google Scholar 

  • Singh MV, Swaminathan PD, Luczak ED, Kutschke W, Weiss RM, Anderson ME (2012) MyD88 mediated inflammatory signaling leads to CaMKII oxidation, cardiac hypertrophy and death after myocardial infarction. J Mol Cell Cardiol 52(5):1135–1144. https://doi.org/10.1016/j.yjmcc.2012.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son M, Diamond B, Santiago-Schwarz F (2015) Fundamental role of C1q in autoimmunity and inflammation. Immunol Res 63(1–3):101–106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L (2013) Roles of γ δ T Cells in the Pathogenesis of Autoimmune Diseases. Clin Dev Immunol 2013:985753

    PubMed  PubMed Central  Google Scholar 

  • Taylor P, Westhovens R, Aa AV, Jamoul C, Li W, Goyal L et al (2017) THU0206 The jak1-selective inhibitor filgotinib reduces multiple markers of inflammation linked to various pathologic cell types and processes in rheumatoid arthritis patients. Ann Rheum Dis 76(Suppl 2):281–282. https://doi.org/10.1136/annrheumdis-2017-eular.5799

    Article  Google Scholar 

  • Tcherepanova I, Curtis M, Sale M, Miesowicz F, Nicolette CJ (2013) SAT0193 Results of a randomized placebo controlled phase ia study of AGS-009, a humanized anti-interferon-α monoclonal antibody in subjects with systemic lupus erythematosus. Ann Rheum Dis 71(Suppl 3):536–537

    Google Scholar 

  • Ternant D, Ducourau E, Fuzibet P, Vignault C, Watier H, Lequerré T et al (2015) Pharmacokinetics and concentration–effect relationship of adalimumab in rheumatoid arthritis. Br J Clin Pharmacol 79(2):286–297. https://doi.org/10.1111/bcp.12509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tews DS, Goebel HH (1996) Cytokine expression profile in idiopathic inflammatory myopathies. J Neuropathol Exp Neurol 55(3):342–347

    CAS  PubMed  Google Scholar 

  • Tishler M, Yaron I, Shirazi I, Yossipov Y, Yaron M (1999) Increased salivary interleukin-6 levels in patients with primary Sjögren's syndrome. Rheumatol Int 18(4):125–127

    CAS  PubMed  Google Scholar 

  • Tournadre A, Lenief V, Eljaafari A, Miossec P (2012) Immature muscle precursors are a source of interferon-β in myositis: role of Toll-like receptor 3 activation and contribution to HLA class I up-regulation. Arthritis Rheum 64(2):533–541. https://doi.org/10.1002/art.33350

    Article  CAS  PubMed  Google Scholar 

  • Udalova IA, Mantovani A, Feldmann M (2016) Macrophage heterogeneity in the context of rheumatoid arthritis. Nat Rev Rheumatol 12(8):472

    CAS  PubMed  Google Scholar 

  • Ulfgren A-K, Grundtman C, Borg K, Alexanderson H, Andersson U, Harris HE, Lundberg IE (2004) Down-regulation of the aberrant expression of the inflammation mediator high mobility group box chromosomal protein 1 in muscle tissue of patients with polymyositis and dermatomyositis treated with corticosteroids. Arthritis Rheum 50(5):1586–1594. https://doi.org/10.1002/art.20220

    Article  CAS  PubMed  Google Scholar 

  • van den Hoogen LL, van Laar JM (2020) Targeted therapies in systemic sclerosis, myositis, antiphospholipid syndrome, and Sjögren's syndrome. Best Pract Res Clin Rheumatol 34(1):101485

    PubMed  Google Scholar 

  • van Lieshout AWT, Vonk MC, Bredie SJH, Joosten LBA, Netea MG, van Riel PLCM et al (2009) Enhanced interleukin-10 production by dendritic cells upon stimulation with Toll-like receptor 4 agonists in systemic sclerosis that is possibly implicated in CCL18 secretion. Scand J Rheumatol 38(4):282–290. https://doi.org/10.1080/03009740802572467

    Article  CAS  PubMed  Google Scholar 

  • Van Vollenhoven RF, Hahn BH, Tsokos GC, Wagner CL, Lipsky P, Touma Z et al (2018) Efficacy and safety of ustekinumab, an IL-12 and IL-23 inhibitor, in patients with active systemic lupus erythematosus: results of a multicentre, double-blind, phase 2, randomised, controlled study. Lancet 392(10155):1330–1339

    PubMed  Google Scholar 

  • Vogelsang P, Jonsson M, Dalvin S, Appel S (2006) Role of dendritic cells in Sjögren's syndrome. Scand J Immunol 64(3):219–226

    CAS  PubMed  Google Scholar 

  • Wang Y, Han C-C, Cui D, Li Y, Ma Y, Wei W (2017) Is macrophage polarization important in rheumatoid arthritis? Int Immunopharmacol 50:345–352

    PubMed  Google Scholar 

  • Watts ER, Ryan E, Walmsley SR, Whyte MKB (2018) Microenvironmental regulation of innate immune cell function. In: Cavaillon JM, Singer M (eds) Molecular and cellular mechanisms to the clinic, 1st edn. Wiley-VCHVerlagGmbH&Co.KGaA, France, pp 947–970

    Google Scholar 

  • Wijbrandts CA, Remans PH, Klarenbeek PL, Wouters D, van den Bergh Weerman MA, Smeets TJ et al (2008) Analysis of apoptosis in peripheral blood and synovial tissue very early after initiation of infliximab treatment in rheumatoid arthritis patients. Arthritis Rheum 58(11):3330–3339

    CAS  PubMed  Google Scholar 

  • Willeke P, Schlüter B, Schotte H, Domschke W, Gaubitz M, Becker H (2009) Interferon-γ is increased in patients with primary Sjogren's syndrome and Raynaud's phenomenon. Semin Arthritis Rheum 39(3):197–202

    CAS  PubMed  Google Scholar 

  • Wouters D, Voskuyl AE, Molenaar ET, Dijkmans BA, Hack CE (2006) Evaluation of classical complement pathway activation in rheumatoid arthritis: measurement of C1q–C4 complexes as novel activation products. Arthritis Rheum 54(4):1143–1150

    CAS  PubMed  Google Scholar 

  • Wright HL, Moots RJ, Edwards SW (2014) The multifactorial role of neutrophils in rheumatoid arthritis. Nat Rev Rheumatol 10(10):593

    CAS  PubMed  Google Scholar 

  • Xu Y, Chen G (2015) Mast cell and autoimmune diseases. Mediat Inflamm 2015:246126

    Google Scholar 

  • Yoshimoto K, Tanaka M, Kojima M, Setoyama Y, Kameda H, Suzuki K et al (2011) Regulatory mechanisms for the production of BAFF and IL-6 are impaired in monocytes of patients of primary Sjögren's syndrome. Arthritis Res Ther 13(5):170

    Google Scholar 

  • Yoshitomi H (2019) Regulation of immune responses and chronic inflammation by fibroblast-like synoviocytes. Front Immunol 10:1395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu MB, Langridge WH (2017) The function of myeloid dendritic cells in rheumatoid arthritis. Rheumatol Int 37(7):1043–1051

    CAS  PubMed  Google Scholar 

  • Zamir O, Hasselgren PO, Higashiguchi T, Frederick JA, Fischer JE (1992) Tumour necrosis factor (TNF) and interleukin-1 (IL-1) induce muscle proteolysis through different mechanisms. Mediators Inflamm 1(4):247–250. https://doi.org/10.1155/S0962935192000371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Yan JW, Wang YJ, Wan YN, Wang BX, Tao JH et al (2014) Association of interleukin 1 family with systemic sclerosis. Inflammation 37(4):1213–1220. https://doi.org/10.1007/s10753-014-9848-7

    Article  CAS  PubMed  Google Scholar 

  • Zouali M, La Cava A (2019) Editorial: innate immunity pathways in autoimmune diseases. Front Immunol 10:1245. https://doi.org/10.3389/fimmu

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the student research committee of Mazandaran University of Medical Science, Sari, Iran for financially supporting this research.

Author information

Authors and Affiliations

Authors

Contributions

PZ and AH contributed to the idea design and literature search. AR and MT helped in data interpretation. MS, SH, and MD wrote the manuscript. ST contributed to designing the figures. FKH and DB contributed in language editing. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Parisa Zafari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hejrati, A., Rafiei, A., Soltanshahi, M. et al. Innate immune response in systemic autoimmune diseases: a potential target of therapy. Inflammopharmacol 28, 1421–1438 (2020). https://doi.org/10.1007/s10787-020-00762-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-020-00762-y

Keywords

Navigation