Skip to main content
Log in

Protective effect of gallic acid in experimental model of ketamine-induced psychosis: possible behaviour, biochemical, neurochemical and cellular alterations

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Gallic acid has been reported to possess a number of psychopharmacological activities. These activities are attributed to the antioxidant potential due to the presence of phenolic moeity. The present study was carried out to investigate the protective effects of gallic acid in an experimental model of ketamine-induced psychosis in mice. Ketamine (50 mg/kg, i.p.) was used to induce stereotyped psychotic behavioural symptoms in mice. Behavioural studies (locomotor activity, stereotype behaviour, immobility duration and memory retention) were carried out to investigate the protective of gallic acid on ketamine-induced psychotic symptoms, followed by biochemical and neurochemical changes and cellular alterations in the brain. Chronic treatment with gallic acid for 15 consecutive days significantly attenuated stereotyped behavioural symptoms in mice. Biochemical estimations revealed that gallic acid reduced the lipid peroxidation and restored the total brain proteins. Furthermore, gallic acid remarkably reduced the dopamine levels, AChE activity and inflammatory surge (serum TNF-α), and increased the levels of GABA and increased glutathione in mice. The study revealed that gallic acid could ameliorate psychotic symptoms and biochemical changes in mice, indicating protective effects in psychosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16:2766–2778

    Article  CAS  PubMed  Google Scholar 

  • Bubenikova-Valesova V, Horacek J, Vrajova M, Hoschl C (2008) Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci Biobehav Rev 63:1014–1023

    Article  Google Scholar 

  • Chatterjee M, Verma P, Maurya R, Palit G (2011) Evaluation of ethanol leaf extract of Ocimum sanctum in experimental models of anxiety and depression. Pharm Biol 49:477–483

    Article  PubMed  Google Scholar 

  • Chatterjee M, Verma R, Ganguly S, Palit G (2012) Neurochemical and molecular characterization of ketamine-induced experimental psychosis model in mice. Neuropharmacology 63:1161–1171

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee M, Ganguly S, Srivastava M, Palit G (2016) Effect of ‘chronic’ versus ‘acute’ketamine administration and its ‘withdrawal’ effect on behavioural alterations in mice: implications for experimental psychosis. Behav Brain Res 216:247–248

    Article  Google Scholar 

  • Chhillar R, Dhingra D (2013) Antidepressant-like activity of gallic acid in mice subjected to unpredictable chronic mild stress. Fundam Clin Pharmacol 27:409–418

    Article  CAS  PubMed  Google Scholar 

  • Choi WS, Kim HW, Xia Z (2015) JNK inhibition of VMAT2 contributes to rotenone-induced oxidative stress and dopamine neuron death. Toxicology 328:75–81

    Article  CAS  PubMed  Google Scholar 

  • Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM (2013) Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 11:315–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva FCC, de Oliveira Cito MDC, da Silva MIG, Moura BA, de Aquino Neto MR, Feitosa ML, de Castro Chaves R, Macedo DS, de Vasconcelos SMM, de França Fonteles MM, de Sousa FCF (2010) Behavioural alterations and pro-oxidant effect of a single ketamine administration to mice. Brain Res Bull 83:9–15

    Article  PubMed  Google Scholar 

  • de Oliveira L, Spiazzi CMDS, Bortolin T, Canever L, Petronilho F, Mina FG, Dal-Pizzol F, Quevedo J, Zugno AI (2009) Different sub-anesthetic doses of ketamine increase oxidative stress in the brain of rats. Prog Neuropsychopharmacol Biol Psychiatry 33:1003–1008

    Article  PubMed  Google Scholar 

  • Dhingra D, Bansal S (2015) Antidepressant-like activity of plumbagin in unstressed and stressed mice. Pharmacol Rep 67:1024–1032

    Article  CAS  PubMed  Google Scholar 

  • Dhingra D, Chhillar R, Gupta A (2012) Antianxiety-like activity of gallic acid in unstressed and stressed mice: possible involvement of nitriergic system. Neurochem Res 37:487–494

    Article  CAS  PubMed  Google Scholar 

  • Dhingra MS, Dhingra S, Chadha R, Singh T, Karan M (2014a) Design, synthesis, physicochemical, and pharmacological evaluation of gallic acid esters as non-ulcerogenic and gastroprotective anti-inflammatory agents. Med Chem Res 23(11):4771–4788

    Article  CAS  Google Scholar 

  • Dhingra MS, Dhingra S, Kumria R, Chadha R, Singh T, Kumar A, Karan M (2014b) Effect of trimethylgallic acid esters against chronic stress-induced anxiety-like behaviour and oxidative stress in mice. Pharmacol Rep 66(4):606–612

    Article  CAS  PubMed  Google Scholar 

  • Duncan GE, Sheitman BB, Lieberman JA (1999) An integrated view of pathophysiological models of schizophrenia. Brain Res Rev 29:250–264

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulphydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Faludi G, Dome P, Lazary J (2011) Origins and perspectives of schizophrenia research. Neuropsychopharmacol Hung 13:185–192

    PubMed  Google Scholar 

  • Farbood Y, Sarkaki A, Hashemi S, Mansouri MT, Dianat M (2013) The effects of gallic acid on pain and memory following transient global ischemia/reperfusion in wistar rats. Avicenna J Phytomed 3:329–340

    PubMed  PubMed Central  Google Scholar 

  • Fell MJ, McKinzie DL, Monn JA, Svensson KA (2012) Group II metabotropic glutamate receptor agonists and positive allosteric modulators as novel treatments for schizophrenia. Neuropharmacology 62:1473–1483

    Article  CAS  PubMed  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    CAS  PubMed  Google Scholar 

  • Halliwell B (2001) Role of free radicals in the neurodegenerative diseases. Drugs Aging 18:685–716

    Article  CAS  PubMed  Google Scholar 

  • Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16:710–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman DC, Donovan H (1995) Catalepsy as a rodent model for detecting antipsychotic drugs with extrapyramidal side effect liability. Psychopharmacology 120:128–133

    Article  CAS  PubMed  Google Scholar 

  • Hons J, Zirko R, Ulrychova M, Cermakova E, Doubek P, Libiger J (2010) Glycine serum level in schizophrenia: relation to negative symptoms. Psychiatry Res 176:103–108

    Article  CAS  PubMed  Google Scholar 

  • Hosseini N, Alaei H, Reisi P, Radahmadi M (2013) The effect of treadmill running on passive avoidance learning in animal model of Alzheimer disease. Int J Prev Med 4:187–192

    PubMed  PubMed Central  Google Scholar 

  • Huang HL, Lin CC, Jeng KC, Yao PW, Chuang LT, Kuo SL, Hou CW (2012) Fresh green tea and gallic acid ameliorate oxidative stress in kainic acid-induced status epilepticus. J Agric Food Chem 60:2328–2336

    Article  CAS  PubMed  Google Scholar 

  • Joshi H, Parle M (2006a) Evaluation of nootropic potential of Ocimum Sanctum Linn. in mice. Indian J Exp Biol 44:133–136

    PubMed  Google Scholar 

  • Joshi H, Parle M (2006b) Cholinergic basis of memory-strengthening effect of Foeniculum vulgare Linn. J Med Food 9:413–417

    Article  PubMed  Google Scholar 

  • Kamble RA, Oswal RJ, Antre RV, Adkar PP, Bayas JP, Bagul Y (2011) Anti-psychotic activity of Catunargaom spinosa (Thumb.). Res J Pharm Biol Chem Sci 2:664–668

    Google Scholar 

  • Keefe RS, Silva SG, Perkins DO, Lieberman JA (1999) The effects of atypical antipsychotic drugs on neurocognitive impairment in schizophrenia: a review and meta-analysis. Schizophr Bull 25:201–222

    Article  CAS  PubMed  Google Scholar 

  • Kim YD, Lantz-McPeak SM, Ali SF, Kleinman MT, Choi YS, Kim H (2014) Effects of ultrafine diesel exhaust particles on oxidative stress generation and dopamine metabolism in PC-12 cells. Environ Toxicol Pharmacol 37:954–959

    Article  CAS  PubMed  Google Scholar 

  • Klinkenberg I, Sambeth A, Blokland A (2011) Acetylcholine and attention. Behav Brain Res 221:430–442

    Article  CAS  PubMed  Google Scholar 

  • Koenig JI, Elmer GI, Shepard PD, Lee PR, Mayo C, Joy B, Hercher E, Brady DL (2005) Prenatal exposure to a repeated variable stress paradigm elicits behavioural and neuroendocrinological changes in the adult offspring: potential relevance to schizophrenia. Behav Brain Res 156:251–261

    Article  PubMed  Google Scholar 

  • Kroes BH, Van den Berg AJJ, Van Ufford HQ, Van Dijk H, Labadie RP (1992) Anti-inflammatory activity of gallic acid. Planta Med 58:499–504

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Yadav M, Parle M, Dhingra S, Dhull DK (2017) Potential drug targets and treatment of schizophrenia. Inflamm 25(3):277–292  

    Article  CAS  Google Scholar 

  • Laskaris LE, Di Biase MA, Everall I, Chana G, Christopoulos A, Skafidas E, Cropley VL, Pantelis C (2016) Microglial activation and progressive brain changes in schizophrenia. Br J Clin Pharmacol 173:666–680

    Article  CAS  Google Scholar 

  • Lieberman JA, Bymaster FP, Meltzer HY, Deutch AY, Duncan GE, Marx CE, Aprille JR, Dwyer DS, Li XM, Mahadik SP, Duman RS (2008) Antipsychotic drugs: comparison in animal models of efficacy, neurotransmitter regulation, and neuroprotection. Pharmacol Rev 60:358–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorrain DS, Baccei CS, Bristow LJ, Anderson JJ, Varney MA (2003) Effects of ketamine and N-methyl-d-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience 117:697–706

    Article  CAS  PubMed  Google Scholar 

  • Lowe IP, Robins E, Eyerman GS (1958) The fluorimetric measurement of glutamic, decarboxylase measurement and its distributionin brain. J Neuro Chem 3:8–18

    CAS  Google Scholar 

  • Lull ME, Block ML (2010) Microglial activation and chronic neurodegeneration. Neurotherapeutics 7:354–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansouri MT, Farbood Y, Sameri MJ, Sarkaki A, Naghizadeh B, Rafeirad M (2013) Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats. Food Chem 138:1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Maria MT, Pulschen D, Thome J (2012) The role of oxidative stress in depressive disorders. Curr Pharm Des 18:5890–5899

    Article  Google Scholar 

  • Monji A, Kato T, Kanba S (2009a) Cytokines and schizophrenia: microglia hypothesis of schizophrenia. Psychiatry Clin Neurosci 63:257–265

    Article  CAS  PubMed  Google Scholar 

  • Monji A, Kato T, Kanba S (2009b) Cytokines and schizophrenia: microglia hypothesis of schizophrenia. Psychiatry Clin Neurosci 63:257–265

    Article  CAS  PubMed  Google Scholar 

  • Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, Laurie C, Gendelman HE (2006) Neuroinflammation, oxidative stress, and the pathogenesis of Parkinson’s disease. Clin Neurosci Res 6:261–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagai T, Kitahara Y, Shiraki A, Hikita T, Taya S, Kaibuchi K, Yamada K (2010) Dysfunction of dopamine release in the prefrontal cortex of dysbindin deficient sandy mice: an in vivo microdialysis study. Neurosci Lett 470:134–138

    Article  CAS  PubMed  Google Scholar 

  • Parle M, Kadian R (2013) Behavioural models of psychosis. Int Res J Pharm 4:26–30

    Article  Google Scholar 

  • Parle M, Sharma K (2013) Biomarker and causative factor of schizophrenia. Int Res J Pharm 4:78–85

    Article  Google Scholar 

  • Parle M, Kadian R, Kaura S (2013) Non-behavioural models of psychosis. Int Res J Pharm 4:89–95

    Article  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioural despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    CAS  PubMed  Google Scholar 

  • Reckziegel P, Dias VT, Benvegnú DM, Boufleur N, Barcelos RCS, Segat HJ, Pase CS, dos Santos CMM, Flores ÉMM, Bürger ME (2016) Antioxidant protection of gallic acid against toxicity induced by Pb in blood, liver and kidney of rats. Toxicol Rep 3:351–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheller M, Bufler J, Hertle I, Schneck H, Franke C, Kochs E (1996) Ketamine blocks currents through mammalian nicotinic acetylcholine receptor channels by interaction with both the open and the closed state. Anesth Analg 83:830–836

    Article  CAS  PubMed  Google Scholar 

  • Schlumpf M, Lichtensteiger W, Langemann H, Waser PG, Hefti F (1974) A fluorimetric micromethod for the simultaneous determination of serotonin, noradrenaline and dopamine in milligram amount of brain tissue. Biochem Pharmacol 23:2437–2446

    Article  CAS  PubMed  Google Scholar 

  • Sharma K, Parle M, Yadav M (2016) Evaluation of antipsychotic effect of methanolic extract of Ocimum sanctum leaves on laboratory animals. J App Pharm Sci 6:171–177

    Article  Google Scholar 

  • Singh P, Rahul MK, Thawani V, Sudhakar P (2013) Anxiolytic effect of chronic administration of gallic acid in rats. J App Pharm Sci 31:01–04

    Google Scholar 

  • Smith G (1988) Animal models for Alzheimer’s disease: experimental cholinergic denervation. Brain Res Rev 13:103–118

    Article  Google Scholar 

  • Snyder SH, Banerjee SP, Yamamura HI, Greenberg D (1974) Drugs, neurotransmitters, and schizophrenia. Science 184:1243–1253

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan M, Parle M (2009) Antiamnesic potential of Murraya koenigii leaves. Phytother Res 23:308–316

    Article  CAS  PubMed  Google Scholar 

  • Wills ED (1964) The effect of inorganic iron on the thiobarbituric acid method for the determination of lipid peroxides. Biochim Biophys Acta 84:475–477

    CAS  PubMed  Google Scholar 

  • Yadav M, Parle M, Kadian M, Sharma K (2015) A review on psychosis and anti-psychotic plants. Asian J Pharm Clin Res 8:24–28

    Google Scholar 

  • Yadav M, Parle M, Sharma N, Ghimire K, Khare N (2016) Role of bioactive phytoconstituents from several traditional herbs as natural neuroprotective agents. Inventi Rapid Planta Activa 4:1–4

    Google Scholar 

  • Zugno AI, Chipindo HL, Volpato AM, Budni J, Steckert AV, de Oliveira MB, Heylmann AS, da Silveira Rosa F, Mastella GA, Maravai SG, Wessler PG (2014) Omega-3 prevents behaviour response and brain oxidative damage in the ketamine model of schizophrenia. Neuroscience 259:223–231

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India) for providing scholarship to Monu Yadav, one of the key investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer Dhingra.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, M., Jindal, D.K., Dhingra, M.S. et al. Protective effect of gallic acid in experimental model of ketamine-induced psychosis: possible behaviour, biochemical, neurochemical and cellular alterations. Inflammopharmacol 26, 413–424 (2018). https://doi.org/10.1007/s10787-017-0366-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-017-0366-8

Keywords

Navigation