Skip to main content
Log in

Terminalia arjuna prevents Interleukin-18-induced atherosclerosis via modulation of NF-κB/PPAR-γ-mediated pathway in Apo E−/− mice

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Aim of the study

Terminalia arjuna is a medicinal plant well known as a cardiotonic in Ayurvedic system of medicine. We hypothesized that aqueous stem bark extract of T. arjuna (TAE) may inhibit IL-18-induced atherosclerosis via NF-κB/PPAR-γ-mediated pathway in Apo E−/− mice.

Materials and methods

12-week-old, male Apo E−/− mice divided into four groups (n = 6/group) fed with normal chow-diet were employed: GP I: phosphate buffer saline (PBS) (2 month); GP II: rIL-18 (1 month) followed by PBS (1 month); GP III: rIL-18 (1 month) followed by TAE (1 month); GP IV: rIL-18 (1 month) followed by atorvastatin (1 month).

Results

IL-18 treatment induced a significant increase (p < 0.001) in pro-inflammatory marker (IL-18) (170 ± 9.16 vs. 1178.66 ± 8.08, pg/ml), and downregulated cholesterol efflux gene (PPAR-γ) by ~0.6-fold vs. 1.00 in IL-18-treated mice as compared to the control animals, respectively. TAE treatment to both groups caused a significant reduction in IL-18 to 281.66 ± 9.60 vs. 1178.66 ± 8.08 (pg/ml), upregulated cholesterol efflux gene by ~1.5- vs. 0.6-fold in TAE-treated group, decreased atherogenic lipids, and percentage atherosclerotic lesion area, demonstrating comparable effects with atorvastatin.

Conclusion

Our data demonstrate that TAE protects against IL-18-induced atherosclerosis via NF-κB/PPAR-γ-mediated pathway.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham S, Kumar MS, Sehgal PK et al (2005) Evaluation of the inhibitory effect of triphala on PMN-type matrix metalloproteinase (MMP-9). J Periodontol 76:497–502

    Article  CAS  PubMed  Google Scholar 

  • Ali A, Kaur G, Hayat K, Ali M, Ather M (2003) A novel naphthanol glycoside from Terminalia arjuna with antioxidant and nitric oxide inhibitory activities. Pharmazie 58:932–934

    CAS  PubMed  Google Scholar 

  • Bhat OM, Kumar PU, Giridharan NV et al (2015) Interleukin-18-induced atherosclerosis involves CD36 and NF-κB crosstalk in Apo E−/− mice. J Cardiol 66:28–35

    Article  PubMed  Google Scholar 

  • Carluccio MA, Siculella L, Ancora MA et al (2003) Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscler Thromb Vasc Biol 23:622–629

    Article  CAS  PubMed  Google Scholar 

  • Chander R, Singh K, Khanna AK et al (2004) Antidyslipidemic and antioxidant activities of different fractions of Terminalia arjuna stem bark. Indian J Clin Biochem 19:141–148

    Article  PubMed  PubMed Central  Google Scholar 

  • Chawla A, Barak Y, Nagy L et al (2001) PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 7:48–52

    Article  CAS  PubMed  Google Scholar 

  • Dinarello CA (2007) Interleukin-18 and the pathogenesis of inflammatory diseases. Semin Nephrol 27:98–114

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi S, Agarwal MP (1994) Antianginal and cardioprotective effects of Terminalia arjuna, an indigenous drug, in coronary artery disease. J Assoc Physicians India 42:287–289

    CAS  PubMed  Google Scholar 

  • Dwivedi S, Gupta D (2002) Efficacy of Terminalia arjuna in chronic stable angina. Indian Heart J 54:441

    CAS  PubMed  Google Scholar 

  • Friedwald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    Google Scholar 

  • Galkina E, Ley K (2007) Leukocyte influx in atherosclerosis. Curr Drug Targets 8:1239–1248

    Article  CAS  PubMed  Google Scholar 

  • Ghayur T, Banerjee S, Hugunin M, Butler D, Herzog L, Carter A, Quintal L, Sekut L, Talanian R, Paskind M, Wong W, Kamen R, Tracey D, Allen H (1997) Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production. Nature 386:619–623

    Article  CAS  PubMed  Google Scholar 

  • Grandjean-Laquerriere A, Antonicelli F, Gangloff SC et al (2007) UVB-induced IL-18 production in human keratinocyte cell line NCTC 2544 through NF-kappa B activation. Cytokine 37:76–83

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Kuida K, Tsutsui H, Ku G, Hsiao K, Fleming MA, Hayashi N, Higashino K, Okamura H, Nakanishi K, Kurimoto M, Tanimoto T, Flavell RA, Sato V, Harding MW, Livingston DJ, Su MS (1997) Activation of interferon-gamma inducing factor mediated by interleukin-1β converting enzyme. Science 275:206–209

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Singhal S, Goyle A et al (2001) Antioxidant and hypocholesterolaemic effects of Terminalia arjuna tree-bark powder: a randomised placebo-controlled trial. J Assoc Physicians India 49:231–235

    CAS  PubMed  Google Scholar 

  • Hoshino K, Tsutsui H, Kawai T et al (1999) Cutting edge: generation of IL-18 receptor-deficient mice: evidence for IL-1 receptor-related protein as an essential IL-18 binding receptor. J Immunol 162:5041–5044

    CAS  PubMed  Google Scholar 

  • Howard AD, Kostura MJ, Thornberry N, Ding GJ, Limjuco G, Weidner J, Salley JP, Hogquist KA, Chaplin DD, Mumford RA (1991) IL-1-converting enzyme requires aspartic acid residues for processing of the IL-1 beta precursor at two distinct sites and does not cleave 31-kDa IL-1 alpha. J Immunol 147:2964–2969

    CAS  PubMed  Google Scholar 

  • Kapoor D, Vijayvergiya R, Dhawan V (2014) Terminalia arjuna in coronary artery disease: ethnopharmacology, pre-clinical, clinical & safety evaluation. J Ethnopharmacol 155:1029–1045

    Article  PubMed  Google Scholar 

  • Katagiri K, Kinashi T, Irie S et al (1996) Differential regulation of leukocyte function-associated antigen-1/intercellular adhesion molecules-1-dependent adhesion and aggregation in HL-60 cells. Blood 87:4276–4285

    CAS  PubMed  Google Scholar 

  • Kokkiripati PK, Kamsala RV, Bashyam L et al (2013) Stem-bark of Terminalia arjuna attenuates human monocytic (THP-1) and aortic endothelial cell activation. J Ethnopharmacol 146:456–464

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lampronti I, Khan MT, Borgatti M et al (2008) Inhibitory effects of Bangladeshi medicinal plant extracts on interactions between transcription factors and target DNA sequences. Evid Based Complement Altern Med 5:303–312

    Article  Google Scholar 

  • Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143

    Article  CAS  PubMed  Google Scholar 

  • Lin CC, Kuo CT, Cheng CY et al (2009) IL-1 beta promotes A549 cell migration via MAPKs/AP-1- and NF-kappa B-dependent matrixmetalloproteinase-9 expression. Cell Signal 21:1652–1662

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C (T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Majdalawieh A, Ro HS (2010) PPARgamma1 and LXR-alpha face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1. Nucl Recept Signal 8:e004

    Article  PubMed  PubMed Central  Google Scholar 

  • Malik N, Dhawan V, Bahl A et al (2009) Inhibitory effects of Terminalia arjuna on platelet activation in vitro in healthy subjects and patients with coronary artery disease. Platelets 20:183–190

    Article  CAS  PubMed  Google Scholar 

  • Mallat Z, Corbaz A, Scoazec A et al (2001a) Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation 104:1598–1603

    Article  CAS  PubMed  Google Scholar 

  • Mallat Z, Corbaz A, Scoazec A et al (2001b) Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. Circ Res 89:E41–E45

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Garlanda C, Locati M (2009) Macrophage diversity and polarization in atherosclerosis: a question of balance. Arterioscler Thromb Vasc Biol 29:1419–1423

    Article  CAS  PubMed  Google Scholar 

  • Nachtigal P, Jamborova G, Pospisilova N et al (2006) Atorvastatin has distinct effects on endothelial markers in different mouse models of atherosclerosis. J Pharm Pharm Sci 9:222–230

    CAS  PubMed  Google Scholar 

  • Nimgulkar CC, Anand SB, Kumar UP et al (2013) Abstract 501: poly herbal formulation prevents foam cell formation possibly through attenuation of CD36 scavenger receptor signaling cascade. Arterioscler Thromb Vasc Biol 33:A501

    Article  Google Scholar 

  • Oberoi L, Akiyama T, Lee KH et al (2011) The aqueous extract, not organic extracts, of Terminalia arjuna bark exerts cardiotonic effect on adult ventricular myocytes. Phytomedicine 18:259–265

    Article  PubMed  Google Scholar 

  • Paget GE, Barnes JM (1964) Evaluation of Drug activities. In: Laurence DR, Bacharach AL (eds) Pharmacometrics. Academic Press, New York

    Google Scholar 

  • Park KG, Lee KM, Chang YC et al (2006) The ascochlorin derivative, AS-6, inhibits TNF-alpha-induced adhesion molecule and chemokine expression in rat vascular smooth muscle cells. Life Sci 80:120–126

    Article  CAS  PubMed  Google Scholar 

  • Patil RH, Prakash K, Maheshwari VL (2011) Hypolipidemic effect of Terminalia arjuna (L.) in experimentally induced hypercholesteremic rats. Acta Biol Szeged 55:289–293

    Google Scholar 

  • Pawar RS, Bhutani KK (2005) Effect of oleanane triterpenoids from Terminalia arjuna—cardioprotective drug on the process of respiratory oxyburst. Phytomedicine 12:391–393

    Article  CAS  PubMed  Google Scholar 

  • Piedrahita JA, Zhang SH, Hagaman JR et al (1992) Generation of mice carrying a mutant apolipoprotein-E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci USA 89:4471–4475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raffetto JD, Khalil RA (2008) Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol 75:346–359

    Article  CAS  PubMed  Google Scholar 

  • Repa JJ, Mangelsdorf DJ (2002) The liver X receptor gene team: potential new players in atherosclerosis. Nat Med 8:1243–1248

    Article  CAS  PubMed  Google Scholar 

  • Ruf JC (1999) Wine and polyphenols related to platelet aggregation and atherothrombosis. Drugs Exp Clin Res 25:125–131

    CAS  PubMed  Google Scholar 

  • Sahar S, Dwarakanath RS, Reddy MA et al (2005) Angiotensin II enhances interleukin-18 mediated inflammatory gene expression in vascular smooth muscle cells: a novel cross-talk in the pathogenesis of atherosclerosis. Circ Res 96:1064–1071

    Article  CAS  PubMed  Google Scholar 

  • Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481:278–286

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam S, Subramaniam R, Rajapandian S et al (2011) Anti-atherogenic activity of ethanolic fraction of Terminalia arjuna bark on hypercholesterolemic rabbits. Evid Based Complement Altern Med 2011:487916. doi:10.1093/ecam/neq003

    Article  Google Scholar 

  • Whitman SC, Ravisankar P, Elam H et al (2000) Exogenous interferon-γ enhances atherosclerosis in apolipoprotein E (−/−) mice. Am J Pathol 157:1819–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitman SC, Ravisankar P, Daugherty A (2002) Interleukin-18 enhances atherosclerosis in apolipoprotein E (−/−) mice through release of interferon gamma. Circ Res 90:E34–E38

    Article  CAS  PubMed  Google Scholar 

  • Yamagami H, Kitagawa K, Hoshi T et al (2005) Associations of serum IL-18 levels with carotid intima-media thickness. Arterioscler Thromb Vasc Biol 25:1458–1562

    Article  CAS  PubMed  Google Scholar 

  • Yang MH, Avula B, Smillie T et al (2013a) Screening of medicinal plants for PPARα and PPARγ activation and evaluation of their effects on glucose uptake and 3T3-L1 adipogenesis. Planta Med 79:1084–1095

    Article  CAS  PubMed  Google Scholar 

  • Yang MH, Vasquez Y, Ali Z et al (2013b) Constituents from Terminalia species increase PPARα and PPARγ levels and stimulate glucose uptake without enhancing adipocyte differentiation. J Ethnopharmacol 149:490–498

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. B. Sesikeran for providing facilities at the National Institute of Nutrition, Hyderabad to carry out the research work on Apo E−/− mice.

Source of funding

We thank the Department of Biotechnology, New Delhi, India, for providing the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena Dhawan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The animal protocol was approved by the Institute Animal Ethics Committee (IAEC) (reference No. 49/IAEC/237) of PGIMER, Chandigarh. All the animal procedures were performed following the US National Institutes of Health protocol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, O.M., Kumar, P.U., Rao, K.R. et al. Terminalia arjuna prevents Interleukin-18-induced atherosclerosis via modulation of NF-κB/PPAR-γ-mediated pathway in Apo E−/− mice. Inflammopharmacol 26, 583–598 (2018). https://doi.org/10.1007/s10787-017-0357-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-017-0357-9

Keywords

Navigation