Skip to main content
Log in

Charged Taub-NUT-AdS Black Holes in f(R) Gravity and Holographic Complexity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this work, we obtain charged Taub-NUT-AdS black holes in f(R) gravity with the Maxwell term and deduce its thermodynamic first law. The holographic complexity of the black hole with inner and outer horizons is then studied using the “complexity equals action” (CA duality). We get a complexity growth rate considering all the contributions, including the bulk, boundary, and joint terms. At late times, the complexity growth rate can be expressed in a compact form which is significantly influenced by the Misner string and the correction from the f(R) gravity. Also, our result can reduce to that of the charged Taub-NUT-AdS black hole in Einstein-Maxwell gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ryu, S., Takayanagi, T.: Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006). arXiv:hep-th/0603001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Ryu, S., Takayanagi, T.: Aspects of Holographic Entanglement Entropy. JHEP 08, 045 (2006). arXiv:hep-th/0605073

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Hubeny, V.E., Rangamani, M., Takayanagi, T.: A Covariant holographic entanglement entropy proposal. JHEP 07, 062 (2007). arXiv:0705.0016 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  4. Casini, H., Huerta, M., Myers, R.C.: Towards a derivation of holographic entanglement entropy. JHEP 05, 036 (2011). arXiv:1102.0440 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Nishioka, T., Ryu, S., Takayanagi, T.: Holographic Entanglement Entropy: An Overview. J. Phys. A 42, 504008 (2009). arXiv:0905.0932 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  6. Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017). arXiv:1707.08570 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Jiang, J., Liu, X.: Circuit Complexity for Fermionic Thermofield Double states. Phys. Rev. D 99(2), 026011 (2019). arXiv:1812.00193 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  8. Hackl, L., Myers, R.C.: Circuit complexity for free fermions. JHEP 07, 139 (2018). arXiv:1803.10638 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Khan, R., Krishnan, C., Sharma, S.: Circuit Complexity in Fermionic Field Theory. Phys. Rev. D 98(12), 126001 (2018). arXiv:1801.07620 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  10. Guo, M., Hernandez, J., Myers, R.C., Ruan, S.-M.: Circuit Complexity for Coherent States. JHEP 10, 011 (2018). arXiv:1807.07677 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Guo, M., Fan, Z.-Y., Jiang, J., Liu, X., Chen, B.: Circuit complexity for generalized coherent states in thermal field dynamics. Phys. Rev. D 101 (12), 126007 (2020). arXiv:2004.00344 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  12. Yang, R.-Q.: arXiv:1709.00921 [hep-th]. Phys. Rev. D 97(6), 066004 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. Doroudiani, M., Naseh, A., Pirmoradian, R.: Complexity for Charged Thermofield Double States. JHEP 01, 120 (2020). arXiv:1910.08806 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Susskind, L.: Computational Complexity and Black Hole Horizons. Fortsch. Phys. 64, 24–43 (2016). arXiv:1403.5695 [hep-th]. [Addendum: Fortsch.Phys. 64, 44–48 (2016)]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Stanford, D., Susskind, L.: Complexity and Shock Wave Geometries. Phys. Rev. D 90(12), 126007 (2014). arXiv:1406.2678 [hep-th]

    Article  ADS  Google Scholar 

  16. Brown, A.R., Roberts, D.A., Susskind, L., Swingle, B., Zhao, Y.: Holographic Complexity Equals Bulk Action?. Phys. Rev. Lett. 116(19), 191301 (2016). arXiv:1509.07876 [hep-th]

    Article  ADS  Google Scholar 

  17. Brown, A.R., Roberts, D.A., Susskind, L., Swingle, B., Zhao, Y.: Complexity, action, and black holes. Phys. Rev. D 93(8), 086006 (2016). arXiv:1512.04993 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  18. Fan, Z.-Y., Liang, H.-Z.: Time dependence of complexity for Lovelock black holes. Phys. Rev. D 100(8), 086016 (2019). arXiv:1908.09310 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  19. Fan, Z.-Y., Guo, M.: On the Noether charge and the gravity duals of quantum complexity. JHEP 08, 031 (2018). arXiv:1805.03796[hep-th]. [Erratum: JHEP 09, 121 (2019)]

    Article  ADS  MathSciNet  Google Scholar 

  20. Sun, W., Ge, X.-H.: Notes on complexity growth rate, grand potential and partition function. Gen. Rel. Grav. 54(5), 46 (2022). arXiv:1912.00153 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Fan, Z.-Y., Guo, M.: Holographic complexity under a global quantum quench. Nucl. Phys. B 950, 114818 (2020). arXiv:1811.01473 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  22. Mahapatra, S., Roy, P.: On the time dependence of holographic complexity in a dynamical Einstein-dilaton model. JHEP 11, 138 (2018). arXiv:1808.09917 [hep-th]

    Article  ADS  MATH  Google Scholar 

  23. Babaei-Aghbolagh, H., Yekta, D.M., Velni Babaei, K., Mohammadzadeh, H.: Complexity growth in Gubser-Rocha models with momentum relaxation. Eur. Phys. J. C 82(4), 383 (2022). arXiv:2112.10725 [hep-th]

    Article  ADS  Google Scholar 

  24. Carmi, D., Myers, R.C., Rath, P.: Comments on Holographic Complexity. JHEP 03, 118 (2017). arXiv:1612.00433 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Zhang, M., Fang, C., Jiang, J.: Holographic complexity of rotating black holes with conical deficits, arXiv:2212.05902 [hep-th]

  26. Jiang, S., Jiang, J.: Holographic complexity in charged accelerating black holes. Phys. Lett. B 823, 136731 (2021). arXiv:2106.09371 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  27. Jiang, J., Zhang, M.: Holographic complexity in charged supersymmetric black holes. Phys. Rev. D 102 (8), 084010 (2020). arXiv:2009.06830 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  28. Jiang, J., Gao, S.: Universality of BSW mechanism for spinning particles. Eur. Phys. J. C 79(5), 378 (2019). arXiv:1905.02491 [hep-th]

    Article  ADS  Google Scholar 

  29. Jiang, J.: Action growth rate for a higher curvature gravitational theory. Phys. Rev. D 98(8), 086018 (2018). arXiv:1810.00758 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  30. Fan, Z.-Y., Guo, M.: Holographic complexity and thermodynamics of AdS black holes. Phys. Rev. D 100, 026016 (2019). arXiv:1903.04127 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  31. Cai, R.-G., Ruan, S.-M., Wang, S.-J., Yang, R.-Q., Peng, R.-H.: Action growth for AdS black holes. JHEP 09, 161 (2016). arXiv:1606.08307 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Fu, Z., Maloney, A., Marolf, D., Maxfield, H., Wang, Z.: Holographic complexity is nonlocal. JHEP 02, 072 (2018). arXiv:1801.01137 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Chen, S., Pei, Y.: Holographic Complexity in AdS Accelerating Black Holes. Int. J. Theor. Phys. 60(3), 917–923 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Couch, J., Fischler, W., Nguyen, P.H.: Noether charge, black hole volume, and complexity. JHEP 03, 119 (2017). arXiv:1610.02038 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Al Balushi, A., Hennigar, R.A., Kunduri, H.K., Mann, R.B.: Holographic Complexity and Thermodynamic Volume. Phys. Rev. Lett. 126(10), 101601 (2021). arXiv:2008.09138 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  36. Al Balushi, A., Hennigar, R.A., Kunduri, H.K., Mann, R.B.: Holographic complexity of rotating black holes. JHEP 05, 226 (2021). arXiv:2010.11203 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Bernamonti, A., Bigazzi, F., Billo, D., Faggi, L., Galli, F.: Holographic and QFT complexity with angular momentum. JHEP 11, 037 (2021). arXiv:2108.09281 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Andrews, S., Hennigar, R.A., Kunduri, H.K.: Chemistry and complexity for solitons in AdS5. Class. Quant. Grav. 37 (20), 204002 (2020). arXiv:1912.07637 [hep-th]

    Article  ADS  MATH  Google Scholar 

  39. Belin, A., Myers, R.C., Ruan, S.-M., Sárosi, G., Speranza, A.J.: Does Complexity Equal Anything?. Phys. Rev. Lett. 128(8), 081602 (2022). arXiv:2111.02429 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  40. Belin, A., Myers, R.C., Ruan, S.-M., Sárosi, G., Speranza, A.J.: Complexity Equals Anything II, arXiv:2210.09647 [hep-th]

  41. Jiang, J., Deng, B., Li, X.-W.: Holographic complexity of charged Taub-NUT-AdS black holes. Phys. Rev. D 100(6), 066007 (2019). arXiv:1908.06565 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  42. Sotiriou, T.P., Faraoni, V.: f(R) Theories of Gravity. Rev. Mod. Phys. 82, 451–497 (2010). arXiv:0805.1726 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  43. Zhang, M., Mann, R.B.: Charged accelerating black hole in f(R) gravity. Phys. Rev. D 100(8), 084061 (2019). arXiv:1908.05118 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  44. Papantonopoulos and Lefteris, [lecture notes in physics] the invisible universe: Dark matter and dark energy volume 720 —— models of dark energy

  45. Bordo, A.B., Gray, F., Kubizňák, D.: Thermodynamics and Phase Transitions of NUTty Dyons. JHEP 07, 119 (2019). arXiv:1904.00030 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Ashtekar, A., Das, S.: Asymptotically Anti-de Sitter space-times: Conserved quantities. Class. Quant. Grav. 17, L17–L30 (2000). arXiv:hep-th/9911230

    Article  ADS  MATH  Google Scholar 

  47. Lehner, L., Myers, R. C., Poisson, E., Sorkin, R. D.: Gravitational action with null boundaries. Phys. Rev. D 94(8), 084046 (2016). arXiv:1609.00207 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Pei, Y., Li, L. et al. Charged Taub-NUT-AdS Black Holes in f(R) Gravity and Holographic Complexity. Int J Theor Phys 62, 16 (2023). https://doi.org/10.1007/s10773-023-05280-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05280-5

Keywords

Navigation