Skip to main content
Log in

Multi-Party Quantum Key Agreement Protocol with Bell States and Single Particles

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Liu et al. [Quantum Inf. Process. 12, 1797–1805 (2013)] proposed a multi-party quantum key agreement (QKA) protocol based on single particles. Their protocol can resist outsider and participant attacks. However, its qubit efficiency is low. Min et al. [Int. J. Theor. Phys. 57, 1811–1822 (2018)] put forward a multi-party QKA protocol by using G-Like states and Bell states, which has high qubit efficiency, but it cannot resist the participant attack. In this paper, combining the advantages of the two protocols, we present a multi-party QKA protocol with Bell states and single particles. The protocol can guarantee that each party has an equal opportunity to influence the final shared key and no one can determine the final key alone. Furthermore, the efficiency analysis shows that our multi-party QKA protocol is very efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. Ban-galore (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Goldenberg, L., Vaidman, L.: Quantum cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)

    Article  MATH  Google Scholar 

  5. Tian, T.H., Zhang, J.Z., Li, Y.P.: A voting protocol based on the controlled quantum operation teleportation. Int. J. Theor. Phys. 55, 2303–2310 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Xu, G.B., Wen Q.Y., Qin, S.J., Yang, Y.H., Gao, F.: Quantum nonlocality of multipartite orthogonal product states. Phys. Rev. A. 93, 032341 (2016)

    Article  ADS  Google Scholar 

  7. Jiang, D.H., Xu, Y.L., Xu, G.B.: Arbitrary quantum signature based on local indistinguishability of orthogonal product states. Int. J. Theor Phys. https://doi.org/10.1007/s10773-018-03995-4 (2019)

  8. Jiang, D.H., Wang, X.J., Xu, G.B., Lin, J.Q.: A denoising-decomposition model combining TV minimisation and fractional derivatives. East Asia J. Appl. Math. 8, 447–462 (2018)

    Article  Google Scholar 

  9. Bennett, C.H., Wiesner, S.J.: Communication via one- and two- particle operators on einstein-podolsky-rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)

    Google Scholar 

  11. ElAllati, A., ElBaz, M., Hassouni, Y.: Quantum key distribution via tripartite coherent states. Quantum Inf. Process. 10, 289–602 (2011)

    MathSciNet  Google Scholar 

  12. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)

    MathSciNet  Google Scholar 

  13. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  14. Zhang, Z.J., Li, Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Liu, B., Gao, F., Wen, Q.Y.: Eavesdropping and improvement to multiparty quantum secret sharing with collective eavesdropping-check. Int. J. Theor. Phys. 51, 1211–1223 (2012)

    Article  MATH  Google Scholar 

  16. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the einstein-podolsky-rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Google Scholar 

  17. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Google Scholar 

  18. Diffe, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor. 22, 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparsion of equality with w states. Opt. Commun. 284, 3160–3165 (2011)

    Article  ADS  Google Scholar 

  20. Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52, 212–218 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hsueh, C.C., Chen, C.Y.: Quantum key agreement protocol with maximally entangled states. In: Procssdings 14th Information Security Conference (ISC 2004), pp 236–242. National Taiwan University of Science and Technology, Taipei (2004)

  22. Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13, 2587–2594 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with Bell states and Bell measurements. Quantum Inf. Process. 12, 921–932 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)

    Article  ADS  Google Scholar 

  25. Yin, X.R., Ma, W.P., Liu, W.Y.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 52, 3915–3921 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Chen, H.: Deterministic secure quantum communication with collective detection using single photons. Int. J. Theor. Phys. 51, 2787–2797 (2012)

    Article  MATH  Google Scholar 

  28. Shen, D.S., Ma, W.P., Wang, L.L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13, 2313–2324 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. He, Y.F., Ma, W.P.: Quantum key agreement protocol with four-qubit cluster states. Quantum Inf. Process. 14, 3483–3498 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. He, Y.F., Ma, W.P.: Two-party quantum key agreement against collective noise. Quantum Inf. Process. 15, 5023–5035 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. He, Y.F., Ma, W.P.: Two quantum key agreement protocols immune to collective noise. Int. J. Theor. Phys. 56, 328–338 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149 (2004)

    Article  Google Scholar 

  33. Min, S.Q., Chen, H.Y., Gong, L.H.: Novel multi-party quantum key agreement protocol with g-like states and bell states. Int. J. Theor. Phys. 57, 1811–1822 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sun, Z.W., Zhang, C., Wang, P., Yu, J.P., Zhang, Y., Long, D.Y.: Multi-party quantum key agreement by an entangled six-qubit state. Int. J. Theor. Phys. 55, 1920–1929 (2016)

    Article  MATH  Google Scholar 

  35. Sun, Z.W., Yu, J., Wang, P.: Efficient multi-party quantum key agreemrnt by cluster states. Quantum Inf. Process. 15, 373–384 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Zhu, Z.C., Hu, A.Q., Fu, A.M.: Participant attack on three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 55, 1–7 (2016)

    Article  MATH  Google Scholar 

  37. Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett. 21, 2097 (2004)

    Article  ADS  Google Scholar 

  38. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution system. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  39. Wang, Z., Wang, X.H., Li, Y.X., Huang, X.: Stability and Hopf bifurcation of fractional-order complex-valued single neuron model with time delay. Int. J. Bifurcat. Chaos 27(13), 1750209 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, X.H., Wang, Z., Huang, X., Li, Y.X.: Dynamic analysis of a fractional-order delayed SIR model with saturated incidence and treatment functions. Int. J. Bifurcat. Chaos 28(14), 1850180 (2018)

    Article  MATH  Google Scholar 

  41. Zhang, T.Q., Meng, X.Z., Zhang, T.H.: Global analysis for a delayed siv model with direct and environmental transmissions. J. Appl. Anal. Comput. 6(2), 479–491 (2016)

    MathSciNet  Google Scholar 

  42. Meng, X.Z., Wang, L., Zhang, T.H.: Global dynamics analysis of a nonlinear impulsive stochastic chemostat system in a polluted environment. J. Appl. Anal. Comput. 6(3), 865–875 (2016)

    MathSciNet  Google Scholar 

  43. Zhao, W.C., Li, J., Meng, X.Z.: Dynamical analysis of SIR epidemic model with nonlinear pulse vaccination and lifelong immunity. Discrete Dyn. Nat. Soc. 2015, 848623 (2015)

    MathSciNet  Google Scholar 

  44. Cui, Y.J., Zou, Y.M.: An existence and uniqueness theorem for a second order nonlinear system with coupled integral boundary value conditions. Appl. Math. Comput. 256, 438–444 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Lin, J., Hwang, T.: New circular quantum secret sharing for remote agents. Quantum Inf. Process. 12, 685–697 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Cabellon, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61402265) and the Fund for Postdoctoral Application Research Project of Qingdao (01020120607).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Bao Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HN., Liang, XQ., Jiang, DH. et al. Multi-Party Quantum Key Agreement Protocol with Bell States and Single Particles. Int J Theor Phys 58, 1659–1666 (2019). https://doi.org/10.1007/s10773-019-04063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04063-1

Keywords

Navigation