Skip to main content
Log in

Protecting Qutrit Quantum Coherence

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

High dimensional quantum system plays a vital role in quantum information processing. However, decoherence induced by the coupling between quantum system and environment often destroys quantum resource. In this paper, we study the dynamics and protection of qutrit quantum coherence (QC) under amplitude damping (AD) decoherence. We propose two schemes to protect QC. We find that the first scheme can not always protect QC and the second scheme has prominent advantage over the first scheme. In addition, better protection requires lower success probability (SP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  2. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Scully, M.O.: Enhancement of the index of refraction via quantum coherence. Phys. Rev. Lett. 67, 1855 (1991)

    Article  ADS  Google Scholar 

  4. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge, England (1995)

    Book  Google Scholar 

  5. Asbóth, J.K., Calsamiglia, J., Ritsch, H.: Computable measure of nonclassicality for light. Phys. Rev. Lett. 94, 173602 (2005)

    Article  ADS  Google Scholar 

  6. Vogel, W., Sperling, J.: Unified quantification of nonclassicality and entanglement. Phys. Rev. A 89, 052302 (2014)

    Article  ADS  Google Scholar 

  7. Mraz, M., Sperling, J., Vogel, W., Hage, B.: Witnessing the degree of nonclassicality of light. Phys. Rev. A 90, 03382 (2014)

    Article  Google Scholar 

  8. Roßnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., Lutz, E.: Nanoscale heat engine beyond the carnot limit. Phys. Rev. Lett. 112, 030602 (2014)

    Article  ADS  Google Scholar 

  9. Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)

    Article  Google Scholar 

  10. Correa, L.A., Palao, J.P., Alonso, D., Adesso, G.: Quantum-enhanced absorption refrigerators. Sci. Rep. 4, 3949 (2014)

    Article  ADS  Google Scholar 

  11. Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)

    Article  ADS  Google Scholar 

  12. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    Article  ADS  Google Scholar 

  13. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, England (2000)

    MATH  Google Scholar 

  14. Baumgratz, T., Cramer, M., Plenio, M.B.: Quanfifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  15. Huang, Z.M., Situ, H.Z.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar feld. Ann. Phys. 377, 484 (2017)

    Article  ADS  Google Scholar 

  16. Deveaud-Plédran, B., Quattropani, A., Schwendimann, P. (eds.): Quantum Coherence in Solid State Systems (2009)

  17. Li, C.M., Lambert, N., Chen, Y.N., Chen, G.Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)

    Google Scholar 

  18. Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16, 033007 (2014)

    Article  ADS  Google Scholar 

  19. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  20. Smyth, C., Scholes, G.D.: Method of developing analytical multipartite delocalization measures for mixed W-like states. Phys. Rev. A 90, 032312 (2014)

    Article  ADS  Google Scholar 

  21. Pires, D.P., Celeri, L.C., Soares-Pinto, D.O.: Geometric lower bound for a quantum coherence measure. Phys. Rev. A 91, 042330 (2015)

    Article  ADS  Google Scholar 

  22. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)

    Article  ADS  Google Scholar 

  25. He, J., Xu, S., Ye, L.: Measurement-induced-nonlocality for Dirac particles in Garfinkle-Horowitz-Strominger dilation space-time. Phys. Lett. B 756, 278 (2016)

    Article  ADS  Google Scholar 

  26. Chitambar, E., Hsieh, M. -H.: Relating the resource theories of entanglement and quantum coherence. arXiv:1509.07458 (2015)

  27. Ma, J.J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)

    Article  ADS  Google Scholar 

  28. He, J., Xu, S., Yu, Y., Ye, L.: Property of various correlation measures of open Dirac system with Hawking effect in Schwarzschild space-time. Phys. Lett. B 740, 322 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. Xi, Z., Li, Y., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)

    Article  ADS  Google Scholar 

  30. Hu, X., Fan, H.: Coherence extraction from measurement-induced disturbance. arXiv:1508.01978 (2015)

  31. Lanyon, B.P., et al.: Manipulating biphotonic qutrits. Phys. Rev. Lett. 100, 060504 (2008)

    Article  ADS  Google Scholar 

  32. Inoue, R., Yonehara, T., Miyamoto, Y., Koashi, M., Kozuma, M.: Measuring qutrit-qutrit entanglement of orbital angular momentum states of an atomic ensemble and a photon. Phys. Rev. Lett. 103, 110503 (2009)

    Article  ADS  Google Scholar 

  33. Molina-Terriza, G., Vaziri, A., Ursin, R., Zeilinger, A.: Experimental quantum coin tossing. Phys. Rev. Lett. 94, 040501 (2005)

    Article  ADS  Google Scholar 

  34. Walborn, S.P., Lemelle, D.S., Almeida, M.P., Souto Ribeiro, P.H.: Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys. Rev. Lett. 96, 090501 (2006)

    Article  ADS  Google Scholar 

  35. Kurzynski, P., Kaszlikowski, D.: Contextuality of almost all qutrit states can be revealed with nine observables. Phys. Rev. A 86, 042125 (2012)

    Article  ADS  Google Scholar 

  36. Cabello, A., Amselem, E., Blanchfield, K., Bourennane, M., Bengtsson, I.: Proposed experiments of qutrit state-independent contextuality and two-qutrit contextuality-based nonlocality. Phys. Rev. A 85, 032108 (2012)

    Article  ADS  Google Scholar 

  37. Kwiat, P.G., Barraza-Lopez, S., Stefanov, A., Gisin, N.: Experimental entanglement distillation and hidden non-locality. Nature 409, 1014 (2001)

    Article  ADS  Google Scholar 

  38. Pan, J.W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature (London) 423, 417 (2003)

    Article  ADS  Google Scholar 

  39. Dong, R., et al.: Experimental entanglement distillation of mesoscopic quantum states. Nat. Phys. 4, 919 (2008)

    Article  Google Scholar 

  40. Maniscalco, S., Francica, F., Zaffino, R.L., Gullo, N.L., Plastina, F.: Protecting entanglement via the quantum Zeno effect. Phys. Rev. Lett. 100, 090503 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Kondo, Y., Matsuzaki, Y., Matsushima, K., Filgueiras, J.G.: Using the quantum Zeno effect for suppression of decoherence. New. J. Phys. 18, 013033 (2016)

    Article  ADS  Google Scholar 

  42. Kwiat, P.G., Berglund, A.J., Alterpeter, J.B., White, A.G.: Experimental verification of decoherencefree subspaces. Science 290, 498 (2000)

    Article  ADS  Google Scholar 

  43. Qin, W., Wang, C., Zhang, X.: Protected quantum-state transfer in decoherence-free subspaces. Phys. Rev. A 91, 042303 (2015)

    Article  ADS  Google Scholar 

  44. Sun, Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)

    Article  ADS  Google Scholar 

  45. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81(R), 040103 (2010)

    Article  ADS  Google Scholar 

  46. Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309 (2011)

    Article  ADS  Google Scholar 

  47. Xiao, X., Feng, M.: Reexamination of the feedback control on quantum states via weak measurements. Phys. Rev. A 83, 054301 (2011)

    Article  ADS  Google Scholar 

  48. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  49. He, J., Ye, L.: Protecting entanglement under depolarizing noise environment by using weak measurements. Phys. A 419, 7 (2015)

    Article  ADS  Google Scholar 

  50. He, J., Xu, S., Ye, L.: Inducing multipartite entanglement revival in dissipative environment by means of prior quantum uncollapsing measurements. Phys. A 438, 66 (2015)

    Article  MathSciNet  Google Scholar 

  51. Xu, S., He, J., Song, X.K., Shi, J.D., Ye, L.: Optimized decoherence suppression of two qubits in independent non-Markovian environments using weak measurement and quantum measurement reversal. Quantum Inf. Process 14, 755 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Ding, Z.Y., He, J., Ye, L.: Decoherence suppression of tripartite entanglement in non-Markovian environments by using weak measurements. Ann. Phys. 377, 96 (2017)

    Article  ADS  Google Scholar 

  53. Zhang, Y.J., Han, W., Fan, H., Xia, Y.J.: Enhancing entanglement trapping by weak measurement and quantum measurement reversal. Ann. Phys. 354, 203 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  54. Yune, J., et al.: Quantum discord protection from amplitude damping decoherence. Opt. Express 23, 26012 (2015)

    Article  ADS  Google Scholar 

  55. Xiao, X., Yao, Y., Xie, Y.M., Wang, X.H., Li, Y.L.: Protecting entanglement from correlated amplitude damping channel using weak measurement and quantum measurement reversal. Quantum Inf. Process 15, 3881 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Situ, H.Z., Hu, X.Y.: Dynamics of relative entropy of coherence under Markovian channels. Quantum Inf. Process 15, 4649 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Huang, Z.M., Situ, H.Z.: Optimal protection of quantum coherence in noisy environment. Int. J. Theor. Phys. 56, 503 (2017)

    Article  MATH  Google Scholar 

  58. Xiao, X., Li, T.L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)

    Article  ADS  Google Scholar 

  59. Guo, J.L., Wei, J.L., Qin, W.: Enhancement of quantum correlations in qubitcqutrit system under decoherence of finite temperature. Quantum Inf. Process 14, 1399 (2015)

    Article  ADS  MATH  Google Scholar 

  60. Wang, Q., He, Z., Yao, C.M.: Decoherence suppression of a qutrit system with both spontaneous emission and dephasing by weak measurement and reversal. Phys. Scr. 90, 055102 (2015)

    Article  Google Scholar 

  61. Jin, G.S., Li, S.S., Feng, S.L., Zheng, H.Z.: Method for generating maximally entangled states of multiple three-level atoms in cavity QED. Phys. Rev. A 69, 034302 (2004)

    Article  ADS  Google Scholar 

  62. Langford, N.K., Dalton, R.B., Harvey, M.D., OBrien, J.L., Pryde, G.J., Gilchrist, A., Bartlett, S.D., White, A.G.: Measuring entangled qutrits and their use for quantum bit commitment. Phys. Rev. Lett. 93, 053601 (2004)

    Article  ADS  Google Scholar 

  63. Bogdanov, Y. u. I., Chekhova, M.V., Kulik, S.P., Maslennikov, G.A., Zhukov, A.A., Oh, C.H., Tey, M.K.: Qutrit state engineering with biphotons. Phys. Rev. Lett. 93, 230503 (2004)

    Article  ADS  Google Scholar 

  64. Hioe, F.T., Eberly, J.H.: N-level coherence vector and higher conservation laws in quantum optics and quantum mechanics. Phys. Rev. Lett. 47, 838 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  65. Hioe, F.T., Eberly, J.H.: Nonlinear constants of motion for three-level quantum systems. Phys. Rev. A 25, 2168 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  66. Cheong, Y.W., Lee, S.W.: Balance between information gain and reversibility in weak measurement. Phys. Rev. Lett. 109, 150402 (2012)

    Article  ADS  Google Scholar 

  67. Yang, R.C., Lin, X., Lin, X.M.: Generation of three-qutrit singlet states for three atoms trapped in separated cavities. Opt. Commun. 338, 366 (2015)

    Article  ADS  Google Scholar 

  68. Zhan, X., Zhang, X., Li, J., Zhang, Y.S., Sanders, B.C., Xue, P.: Realization of the contextuality-nonlocality tradeoff with a qubit-qutrit photon pair. Phys. Rev. Lett. 116, 090401 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61502179), the Natural Science Foundation of Guangdong Province of China (Grant No. 2014A030310265), the Guangdong Province Office of Education (Grant No. 2014KTSCX130), the Key Project of Department of Education of Guangdong Province (No. 2014KZDXM055), and the Science Foundation for Young Teachers of Wuyi University (Grant No. 2015zk01),

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Rong, Z., Zou, X. et al. Protecting Qutrit Quantum Coherence. Int J Theor Phys 56, 2540–2550 (2017). https://doi.org/10.1007/s10773-017-3407-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3407-6

Keywords

Navigation