Skip to main content
Log in

Trojan Horse Attack Free Fault-Tolerant Quantum Key Distribution Protocols Using GHZ States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, Yang and Hwang (Quantum Inf. Process. 13(3): 781–794, 19) proposed two fault-tolerant QKD protocols based on their proposed coding functions for resisting the collective noise, and their QKD protocols are free from Trojan horse attack without employing any specific detecting devices (e.g., photon number splitter (PNS) and wavelength filter). By using four-particle Greenberger-Horne-Zeilinger (GHZ) state and four-particle GHZ-like state in their proposed coding functions, Yang and Hwang’s QKD protocols can resist each kind of the collective noise–collective-dephasing noise, collective-rotation noise. However, their proposed coding function can be improved by the utilization of three-particle GHZ state (three-particle GHZ-like state) instead of four-particle GHZ state (four-particle GHZ-like state) that will eventually reduce the consumption of the qubits. As a result, this study proposed the improved version of Yang and Hwang’s coding functions to enhance the qubit efficiency of their schemes from 20 % to 22 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp 175–179, Bangalore (1984)

  2. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65 (2002)

  4. Ben-Or, M., Horodecki, M., Leung, D.W., Mayers, D., Oppenheim, J.: The universal composable security of quantum key distribution, vol. 3378 (2005)

  5. Zhang, Z.J., Man, Z.X., Shi, S.H.: An efficient multiparty quantum key distribution scheme. Int. J. Quantum Inf. 3, 555–560 (2005)

    Article  MATH  Google Scholar 

  6. Chen, P., Li, Y.S., Deng, F.G., Long, G.L.: Measuring-basis encrypted quantum key distribution with four-state systems. Commun. Theor. Phys. 47, 49–52 (2007)

    Article  ADS  Google Scholar 

  7. Hwang, T., Lee, K.C., Li, C.M.: Provably secure three-party authenticated quantum key distribution protocols. IEEE Trans. Dependable Secure Comput. 4, 71–80 (2007)

    Article  Google Scholar 

  8. Gao, G.: Quantum key distribution by comparing Bell states. Opt. Commun. 281, 876–879 (2008)

    Article  ADS  Google Scholar 

  9. Yuan, H., Song, J., Han, L.F., Hou, K., Shi, S.H.: Improving the total efficiency of quantum key distribution by comparing Bell states. Opt. Commun. 281, 4803–4806 (2008)

    Article  ADS  Google Scholar 

  10. Shih, H.C., Lee, K.C., Hwang, T.: New efficient three-party quantum key distribution protocols. IEEE J. Sel. Top. Quantum Electron. 15, 1602–1606 (2009)

    Article  Google Scholar 

  11. Zhao, B.K., Sheng, Y.B., Deng, F.G., Zhang, F.S., Zhou, H.Y.: Stable and deterministic quantum key distribution based on differential phase shift. Int. J. Quantum Inf. 7, 739–745 (2009)

    Article  MATH  Google Scholar 

  12. Hwang, T., Hwang, C.C., Tsai, C.W.: Quantum key distribution protocol using dense coding of three-qubit W state. Eur. Phys. J. D 61, 785–790 (2011)

    Article  ADS  Google Scholar 

  13. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108 (2012)

  14. Simon, D.S., Sergienko, A.V.: High-capacity quantum key distribution via hyperentangled degrees of freedom. New J. Phys. 16 (Jun 2014)

  15. Boileau, J.C., Gottesman, D., Laflamme, R., Poulin, D., Spekkens, R.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92 (2004)

  16. Xiu, X.-M., Dong, L., Gao, Y.-J., Chi, F.: Quantum key distribution protocols with six-photon states against collective noise. Opt. Commun. 282, 4171–4174 (2009)

    Article  ADS  Google Scholar 

  17. Yang, C.-W., Hwang, T.: Fault tolerant quantum key distributions using entanglement swapping of GHZ states over collective-noise channels. Quantum Inf. Process. 12, 3207–3222 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Lai, H., Orgun, M.A., Xiao, J.H., Xue, L.Y.: Fault-tolerant high-capacity quantum key distribution over a collective-noise channel using extended unitary operations. Quantum Inf. Process. 13, 1523–1535 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Yang, C.W., Hwang, T.: Trojan horse attack free fault-tolerant quantum key distribution protocols. Quantum Inf. Process. 13, 781–794 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhou, H.-Y., Sheng, Y.-B., Deng, F.-G., Zhao, B.-K., LI, X.-H.: Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int. J. Quantum Inf. 07, 1479–1489 (2009)

    Article  MATH  Google Scholar 

  21. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78 (2008)

  22. Xi-Han, L., Bao-Kui, Z., Yu-Bo, S., Fu-Guo, D., Hong-Yu, Z.: Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int. J. Quantum Inf. 7, 1479–1489 (2009)

    Article  MATH  Google Scholar 

  23. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306–3309 (1997)

    Article  ADS  Google Scholar 

  24. Walton, Z., Abouraddy, A., Sergienko, A., Saleh, B., Teich, M.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91 (2003)

  25. Li, C.-Y., Li, Y.-S.: Fault-tolerate quantum key distribution over a collective-noise channel. Int. J. Quantum Inf. 08, 1101–1109 (2010)

    Article  MATH  Google Scholar 

  26. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  27. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72 (2005)

  28. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on: Quantum key distribution for d-level systems with generalized Bell states. Phys. Rev. A 72 (2005)

  29. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: Quantum exam. Phys. Lett. A 350, 174 (2006). Phys. Lett. A 360, 748–750 (2007)

    Article  Google Scholar 

  30. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74 (2006)

  31. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack (vol 72, art no 044302, 2005). Phys. Rev. A 73 (2006)

  32. Lin, J., Hwang, T.: Bell state entanglement swappings over collective noises and their applications on quantum cryptography. Quantum Inf. Process. 12, 1089–1107 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the Ministry of Science and Technology of the Republic of China, Taiwan, for partially supporting this research in finance under the Contract No. MOST 104-2221-E-006-102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonelih Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, CH., Yang, CW. & Hwang, T. Trojan Horse Attack Free Fault-Tolerant Quantum Key Distribution Protocols Using GHZ States. Int J Theor Phys 55, 3993–4004 (2016). https://doi.org/10.1007/s10773-016-3028-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3028-5

Keywords

Navigation