Skip to main content
Log in

Quantization of Friedmann-Robertson-Walker Spacetimes in the Presence of a Cosmological Constant and Stiff Matter

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In the present work, we study the quantum cosmology description of two Friedmann-Robertson-Walker models in the presence of a stiff matter perfect fluid and a negative cosmological constant. The models differ from each other by the constant curvature of the spatial sections, taken to be either positive or zero. We work in the Schutz’s variational formalism, quantizing the models and obtaining the appropriate Wheeler-DeWitt equations. In these models there are bound states. Therefore, we compute, for each one, the discrete energy spectrum and the corresponding eigenfunctions. After that, we use the eigenfunctions in order to construct wave packets and evaluate the time-dependent expectation values of the scale factors. Each model shows bounded oscillations for the expectation value of the scalar factor, which is never zero, which can be interpreted as an initial indication that these models may not have singularities at the quantum level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zeldovich, Y.B.: Zh. Eksp. Teor. Fiz. 41, 1609 (1961)

    Google Scholar 

  2. Zeldovich, Y.B.: Sov. Phys. JETP 14, 1143 (1962)

    Google Scholar 

  3. Colistete, R. Jr., Fabris, J.C., Pinto-Neto, N.: Phys. Rev. D 57, 4707 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  4. Colistete, R. Jr., Fabris, J.C., Pinto-Neto, N.: Phys. Rev. D 62, 083507 (2000)

    Article  ADS  Google Scholar 

  5. Falciano, F.T., Pinto-Neto, N., Santini, E.S.: Phys. Rev. D 76, 083521 (2007)

    Article  ADS  Google Scholar 

  6. Oliveira-Neto, G., Monerat, G.A., Corrêa Silva, E.V., Neves, C., Ferreira Filho, L.G.: Int. J. Mod. Phys. Conf. Ser. 3, 254 (2011)

    Article  Google Scholar 

  7. Kamionkowski, M., Turner, M.S.: Phys. Rev. D 42, 3310 (1990)

    Article  ADS  Google Scholar 

  8. Joyce, M.: Phys. Rev. D 55, 1875 (1997)

    Article  ADS  Google Scholar 

  9. Salati, P.: Phys. Lett. B 571, 121 (2003)

    Article  ADS  Google Scholar 

  10. Pallis, C.: Nucl. Phys. B 751, 129 (2006)

    Article  ADS  Google Scholar 

  11. Gomez, M.E., Lola, S., Pallis, C., Rodriguez-Quintero, J.: J. Cosmol. Astropart. Phys. 01, 027 (2009)

    Article  ADS  Google Scholar 

  12. Pallis, C.: Nucl. Phys. B 831, 217 (2010)

    Article  ADS  MATH  Google Scholar 

  13. Zeldovich, Y.B.: Mon. Not. R. Astron. Soc. 160, 1 (1972)

    ADS  Google Scholar 

  14. Joyce, M., Prokopec, T.: Phys. Rev. D 57, 6022 (1998)

    Article  ADS  Google Scholar 

  15. Sahni, V., Sami, M., Souradeep, T.: Phys. Rev. D 65, 023518 (2001)

    Article  ADS  Google Scholar 

  16. Alvarenga, F.G., Fabris, J.C., Lemos, N.A., Monerat, G.A.: Gen. Relativ. Gravit. 34, 651 (2002)

    Article  MATH  Google Scholar 

  17. Green, M.B., Schwarz, J.H., Witten, E.: Superstring Theory, vol. 1. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  18. Green, M.B., Schwarz, J.H., Witten, E.: Superstring Theory, vol. 2. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  19. Maldacena, J.: Adv. Theor. Math. Phys. 2, 231 (1998)

    ADS  MATH  MathSciNet  Google Scholar 

  20. Carlip, S.: Phys. Rev. Lett. 79, 4071 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  21. Anderson, M., Carlip, S., Ratcliffe, J.G., Surya, S., Tschantz, S.T.: Class. Quantum Gravity 21, 729 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Oliveira-Neto, G.: Phys. Rev. D 58, 10750 (1998)

    Google Scholar 

  23. Monerat, G.A., Corrêa Silva, E.V., Oliveira-Neto, G., Ferreira Filho, L.G., Lemos, N.A.: Phys. Rev. D 73, 044022 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  24. Schutz, B.F.: Phys. Rev. D 2, 2762 (1970)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Schutz, B.F.: Phys. Rev. D 4, 3559 (1971)

    Article  ADS  Google Scholar 

  26. Dirac, P.A.M.: Can. J. Math. 2, 129 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  27. Dirac, P.A.M.: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 249, 326 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  28. Dirac, P.A.M.: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 249, 333 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  29. Dirac, P.A.M.: Phys. Rev. 114, 924 (1959)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Lemos, N.A.: J. Math. Phys. 37, 1449 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Acacio de Barros, J., Corrêa Silva, E.V., Monerat, G.A., Oliveira-Neto, G., Ferreira Filho, L.G., Romildo, P. Jr.: Phys. Rev. D 75, 104004 (2007)

    Article  ADS  Google Scholar 

  32. Monerat, G.A., Oliveira-Neto, G., Corrêa Silva, E.V., Ferreira Filho, L.G., Romildo, P. Jr., Fabris, J.C., Fracalossi, R., Gonçalves, S.V.B., Alvarenga, F.G.: Phys. Rev. D 76, 024017 (2007)

    Article  ADS  Google Scholar 

  33. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, New York (2001)

    MATH  Google Scholar 

  34. Pedram, P., Mirzaei, M., Gousheh, S.S.: Comput. Phys. Commun. 176, 581 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Pedram, P., Mirzaei, M., Jalalzadeh, S., Gousheh, S.S.: Gen. Relativ. Gravit. 40, 1663 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Bonazzola, S., Gourgoulhon, E., Marck, J.A.: J. Comput. Appl. Math. 109, 433–473 (1999)

    Article  ADS  MATH  Google Scholar 

  37. Kidder, L.E., Finn, L.S.: Phys. Rev. D 62, 084026 (2000)

    Article  ADS  Google Scholar 

  38. Kidder, L.E., Scheel, M.A., Teukolsky, S.A., Carlson, E.D., Cook, G.B.: Phys. Rev. D 62, 084032 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  39. Pfeiffer, H.P., Kidder, L.E., Scheel, M.A., Teukolsky, S.A.: Comput. Phys. Commun. 152, 253–273 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Grandclément, P., Novak, J.: Living Rev. Relativ. 12, lrr-2009-1 (2009)

    Google Scholar 

  41. Oliveira, H.P., Rodrigues, E.L.: Class. Quantum Gravity 28, 235011 (2011)

    Article  ADS  Google Scholar 

  42. Pedram, P., Jalalzadeh, S.: Gen. Relativ. Gravit. 42, 745 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Barboza, E.M. Jr., Lemos, N.A.: Phys. Rev. D 78, 023504 (2008)

    Article  ADS  Google Scholar 

  44. Pedram, P., Jalalzadeh, S., Gousheh, S.S.: Class. Quantum Gravity 24, 5515 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Pedram, P., Jalalzadeh, S., Gousheh, S.S.: Phys. Lett. B 655, 91 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  46. Barboza, E.M. Jr., Lemos, N.A.: Gen. Relativ. Gravit. 38, 1609 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Lemos, N.A., Monerat, G.A.: Gen. Relativ. Gravit. 35, 423 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

G. Oliveira-Neto thanks Fundação de Amparo à Pesquisa do Estado de Minas Gerais, FAPEMIG, for partial financial support. E.V. Corrêa Silva (Researcher of Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brazil), G.A. Monerat, C. Neves and L.G. Ferreira Filho thank CNPq and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, FAPERJ, for partial financial support. E.V. Corrêa Silva and G.A. Monerat thank Universidade do Estado do Rio de Janeiro, UERJ, for the Prociência grant, via FAPERJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Corrêa Silva.

Appendix: Checking the Solutions

Appendix: Checking the Solutions

In general, the matricial equation (23) is not satisfied exactly by the eigenvalues and eigenvectors obtained. Actually, one expects that the difference between its r.h.s. and l.h.s. be a vector with small but non-vanishing components. We may use the largest (in absolute values) of those components as a measure of error of our approximate solution. (The same number of digits used in spectrum calculations should be used, of course.) Besides, distinct eigenvalues/eigenvectors may yield distinct errors, as shown in Fig. 7: the horizontal axis correspond to the index of the levels, and the vertical axis represents the logarithm of the corresponding error.

Fig. 7
figure 7

Error in equation, for each eigenvalue. In this figure, we are considering the model with k=0. The horizontal axis shows the eigenvalue indices (1st, 2nd,…,250th), rather than their actual values. The vertical axis shows the decimal logarithm of the absolute value of the error obtained when eigenvalues and eigenvectors are substituted back in the matricial eigenvalue equation. Notice that lower levels are more accurate than upper levels

By limiting the number of levels used in the wave packet, we have kept this error under ≈1.6×10−11.

If N functions are used as basis functions for the wave packet (15), we obtain the N×N matricial equation Eq. (23). We have used N=250 in our paper; if we compare the eigenvalues for that situation to those obtained for, say, N=260, we observe, for the first 250 eigenvalues, the percental variations shown in Fig. 8.

Fig. 8
figure 8

(a) Absolute value of the percental variation in each eigenvalue of the spectrum when calculations are carried out with 250 levels and 260 levels, for the model with k=0; the horizontal axis shows the eigenvalue indices (1st, 2nd,…,250th), rather than their actual values. (b) Zoom on the first 30 levels

Then again, the lower the eigenvalues, the better the convergence. The first 18 levels show variations of less than 1.9 %.

We have also checked the orthogonality of approximate eigenfunctions. The results are shown in Fig. 9. Once more, the lower the eigenvalues, the better the orthogonality. Similar results are obtained when we compare the 2nd, 3rd, etc. levels to the upper levels.

Fig. 9
figure 9

Checking the orthogonality of eigenvectors with respect to the first eigenvector, for the model with k=0. The horizontal axis shows the energy level indices (1st, 2nd, etc.), not their actual values. The vertical axis shows the logarithm of the absolute value of the inner product of eigenvectors (the weight function having been taken into account, naturally). Observe that the lowest levels show better results than the upper ones

Finally, we have also observed the behavior of the norm of the packet. In Fig. 10 the norm as a function of time is shown for wave packets obtained for the equiprobable superposition of the 18 lowest levels, for N=250; for the case k=0, variations in the norm are smaller than 10−12, whereas for k=1 variations in the norm are smaller than 10−11. Similarly, Fig. 11 shows the norm as a function of time is shown for wave packets obtained for the equiprobable superposition of the 25 lowest levels, for N=250; for the case k=0, variations in the norm are smaller than 10−12, whereas for k=1 variations in the norm are smaller than 10−11.

Fig. 10
figure 10

Norm with time for the wave packet corresponding to the equiprobable superposition of the lowest 18 levels, for N=250. (a) For k=0, variations of the norm are smaller than 10−12. (b) For k=1, variations of the norm are smaller than 10−11

Fig. 11
figure 11

Norm with time for the wave packet corresponding to the equiprobable superposition of the lowest 25 levels, for N=250. (a) For k=0, variations of the norm are smaller than 10−12. (b) For k=1, variations of the norm are smaller than 10−11

The results of the checkings mentioned above give us good confidence in our results. The choice of the 18 lowest levels was made in order to keep the accuracy of our results within satisfactory values.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira-Neto, G., Monerat, G.A., Corrêa Silva, E.V. et al. Quantization of Friedmann-Robertson-Walker Spacetimes in the Presence of a Cosmological Constant and Stiff Matter. Int J Theor Phys 52, 2991–3006 (2013). https://doi.org/10.1007/s10773-013-1590-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1590-7

Keywords

Navigation