Skip to main content
Log in

Quantum One Go Computation and the Physical Computation Level of Biological Information Processing

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

By extending the representation of quantum algorithms to problem-solution interdependence, the unitary evolution part of the algorithm entangles the register containing the problem with the register containing the solution. Entanglement becomes correlation, or mutual causality, between the two measurement outcomes: the string of bits encoding the problem and that encoding the solution. In former work, we showed that this is equivalent to the algorithm knowing in advance 50% of the bits of the solution it will find in the future, which explains the quantum speed up.

Mutual causality between bits of information is also equivalent to seeing quantum measurement as a many body interaction between the parts of a perfect classical machine whose normalized coordinates represent the qubit populations. This “hidden machine” represents the problem to be solved. The many body interaction (measurement) satisfies all the constraints of a nonlinear Boolean network “together and at the same time”—in one go—thus producing the solution.

Quantum one go computation can formalize the physical computation level of the theories that place consciousness in quantum measurement. In fact, in visual perception, we see, thus recognize, thus process, a significant amount of information “together and at the same time”. Identifying the fundamental mechanism of consciousness with that of the quantum speed up gives quantum consciousness, with respect to classical consciousness, a potentially enormous evolutionary advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castagnoli, G.: The mechanism of quantum computation. Int. J. Theor. Phys. 47(8), 2181 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Castagnoli, G.: The quantum speed up as advanced cognition of the solution. Int. J. Theor. Phys. 48(3), 857 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Castagnoli, G.: The 50% advanced information rule of the quantum algorithms. Int. J. Theor. Phys. 48(8), 2412 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Castagnoli, G.: Quantum algorithms know in advance 50% of the solution they will find in the future. Int. J. Theor. Phys. 48(12), 3383 (2009)

    Article  MathSciNet  Google Scholar 

  5. Castagnoli, G., Finkelstein, D.: Theory of the quantum speed up. Proc. R. Soc. Lond. A 457, 1799 (2001). arXiv:quant-ph/0010081 v1.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Castagnoli, G., Rasetti, M., Vincenzi, A.: Steady, simultaneous quantum computation: a paradigm for the investigation of nondeterministic and non-recursive computation. Int. J. Mod. Phys. C 3(4), 661 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Chalmers, D.: Facing up the problem of consciousness. J. Conscious. Stud. 2, 200–219 (1995)

    Google Scholar 

  8. De Faccio, A.: From an altered state of consciousness to a life long quest of a model of mind. TASTE Archives of Scientists’ Transcendent Experiences, submission N 00098. Charles T. Tart, ed. http://www.issc-taste.org/arc/dbo.cgi?set=expom&id=00088&ss=1 (2002)

  9. Deutsch, D.: Quantum theory, the Church-Turing principle, and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.K., Mencal, T., Cheng, Y.C., Blankenship, R.E., Fleming, G.R.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782 (2007)

    Article  ADS  Google Scholar 

  11. Finkelstein, D.R.: Generational quantum theory. Preprint, to become a Springer book (2008)

  12. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. George, F.H., Johnson, L.: Purposive Behaviour and Teleological Explanations. Studies in Cybernetic, vol. 8. Gordon and Breach, New York (1985)

    Google Scholar 

  14. Grover, L.K.: A fast quantum mechanical algorithm for data base search. In: Proc. 28th Ann. ACM Symp. Theory of Computing (1996)

  15. Hagan, S., Hameroff, S.R., Tuszynski, J.A.: Quantum computation in brain microtubules? Decoherence and biological feasibility. Phys. Rev. E 65, 061901 (2002)

    Article  ADS  Google Scholar 

  16. Hameroff, S.R.: The brain is both neurocomputer and quantum computer. Cogn. Sci. 31, 1035–1045 (2007)

    Google Scholar 

  17. Hameroff, S.R.: The “conscious pilot”—dendritic synchrony moves through the brain to mediate consciousness. J. Biol. Phys. http://www.springerlink.com/content/?k=10.1007/s10867-009-9148-x

  18. Hameroff, S.R., Penrose, R.: Toward a science of consciousness. In: Hameroff, S.R., Kaszniak, A.W., Scott, A.C. (eds.) The First Tucson Discussions and Debates, pp. 507–540. MIT Press, Cambridge (1996)

    Google Scholar 

  19. Lucas, J.R.: The Godelian argument. http://www.leaderu.com/truth/2truth08.html (July, 2002)

  20. Neven, H., Dencher, V.S., Rose, G., Macready, W.G.: Training a binary classifier with the quantum adiabatic algorithm. arXiv:0811.0416v1 [quant-ph] (2008)

  21. Penrose, R.: Shadows of the Mind—A Search for the Missing Science of Consciousness. Oxford University Press, Oxford (1994)

    Google Scholar 

  22. Searle, J.R.: Mind, a Brief Introduction. Oxford University Press, Oxford (2004)

    Google Scholar 

  23. Shehan, D.P.: Frontiers of Time: Retrocausation—Experiment and Theory, San Diego, California, 20–22 June 2006

  24. Shülte-Herbrüggen, T., Spörl, A., Khaneja, N., Glaser, S.J.: Optimal control for generating quantum gates in open dissipative systems. arxiv:quant-ph/0609037 (2009)

  25. Stapp, H.P.: Mind Matter and Quantum Mechanics. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  26. Summhammer, J., Bernroider, G.: Quantum entanglement in the voltage dependent sodium channel can reproduce the salient features of neuronal action potential initiation. arXiv:0712.1474v1 [physics.bio-ph] (2007)

  27. Trugenberger, C.A.: Quantum pattern recognition. arXiv:quant-ph/0210176v2 (2002)

  28. Ventura, D., Martinez, T.: Quantum associative memory. Inf. Sci. 124(14), 273–296 (2000)

    Article  MathSciNet  Google Scholar 

  29. Vitiello, G.: Coherent states, fractals, and brain waves. New Math. Nat. Comput. 5(1), 245–264 (2009)

    Article  MATH  Google Scholar 

  30. Zhou, R., Ding, Q.: Quantum pattern recognition with probability 100%. Int J. Theor. Phys. 47(5) (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Castagnoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castagnoli, G. Quantum One Go Computation and the Physical Computation Level of Biological Information Processing. Int J Theor Phys 49, 304–315 (2010). https://doi.org/10.1007/s10773-009-0203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-009-0203-y

Navigation