Skip to main content
Log in

Bird classification based on their sound patterns

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

In this paper we focus on automatic bird classification based on their sound patterns. This is useful in the field of ornithology for studying bird species and their behavior based on their sound. The proposed methodology may be used to conduct survey of birds. The proposed methods may be used to automatically classify birds using different audio processing and machine learning techniques on the basis of their chirping patterns. An effort has been made in this work to map characteristics of birds such as size, habitat, species and types of call, on to their sounds. This study is also part of a broader project that includes development of software and hardware systems to monitor the bird species that appear in different geographical locations which helps ornithologists to monitor environmental conditions with respect to specific bird species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acevedo, A., Corrada-Bravo, C., Corrada-Bravo, H., Villanueva-Rivera, L., & Aide, T. (2009). Automated classification of bird and amphibian calls using machine learning: A comparison of methods. Ecological Informatics, 4, 206–214.

    Article  Google Scholar 

  • Bardeli, R., Wolff, D., Kurth, F., Koch, M., Tauchert, K., & Frommolt, K. (2010). Detecting bird sounds in a complex acoustic environment and application to bioacoustic monitoring. Pattern Recognition Letters, 31, 1524–1534.

    Article  Google Scholar 

  • Beckers, G. J. (2011). Bird speech perception and vocal production: A comparison with humans. Human Biology, 83(2), 191–212.

    Article  Google Scholar 

  • Bermúdez-Cuamatzin, E., Ríos-Chelén, A. A., Gil, D., & Garcia, C. M. (2010). Experimental evidence for real-time song frequency shift in response to urban noise in a passerine bird. Biology Letters, 3, 368–370.

    Google Scholar 

  • Bolhuis, J. J., Okanoya, K., & Scharff, C. (2010). Twitter evolution: Converging mechanisms in birdsong and human speech. Nature Reviews Neuroscience, 11(11), 747–759.

    Article  Google Scholar 

  • Brandes, T. S. (2008). Automated sound recording and analysis techniques for bird surveys and conservation. Bird Conservation International, 18(S1), S163–S173.

    Google Scholar 

  • Briggs, F., Lakshminarayanan, B., Neal, L., Fern, X. Z., Raich, R., Hadley, S., et al. (2012). Classification of multiple bird species. Journal of Acoustic Society of America, 131, 4640–4650.

    Article  Google Scholar 

  • Chen, Z., & Maher, R. C. (2006). Semi-automatic classification of bird vocalizations using spectral peak tracks. The Journal of the Acoustical Society of America, 120, 2974–2984.

    Article  Google Scholar 

  • Clark, G. A. (1979). Body weights of birds: A review. The Condor, 81(2), 193–202.

    Article  Google Scholar 

  • Davis, S. B., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences, In Proceedings of the IEEE Conference on Acoustics, Speech and Signal Processing (Vol. 28, pp. 357–366).

  • Doupe, A. J., & Kuhl, P. K. (1999). Birdsong and human speech: Common themes and mechanisms. Annual Review of Neuroscience, 22(1), 567–631.

    Article  Google Scholar 

  • Dowling, J., Luther, D., & Marra, P. (2012). Comparative effects of urban development and anthropogenic noise on bird songs. Behavioral Ecology, 23(1), 201–209.

    Article  Google Scholar 

  • Dunning, J. (2013). Updates to the second edition of the CRC handbook of avian body masses. https://ag.purdue.edu/fnr/documents/BodyMassesBirds.pdf.

  • Fagerlund, S. (2007). Bird species recognition using support vector machines. Journal on Advances in Signal Processing, 7, 64–71.

    MATH  Google Scholar 

  • Hall, M. L., Kingma, S. A., & Peters, A. (2013). Male songbird indicates body size with low-pitched advertising songs. PLoS One, 8(2), e56717.

    Article  Google Scholar 

  • Juang, C., & Chen, T. (2007). Birdsong recognition using prediction-based recurrent neural fuzzy networks. Neurocomputing, 71, 121–130.

    Article  Google Scholar 

  • Kight, C. R., & Swaddle, J. P. (2011). How and why environmental noise impacts animals: An integrative, mechanistic review. Ecology Letters, 14(10), 1052–1061.

    Article  Google Scholar 

  • Kwan, C., Mei, G., Zhao, X., Ren, Z., Xu, R., Stanford, V., Rochet, C., Aube, J., & Ho, K. (2004). Bird classification algorithms: Theory and experimental results, In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’04) (vol. 5, pp. 289–292), Montreal, Canada.

  • Laiolo, P. (2010). The emerging significance of bioacoustics in animal species conservation. Biological Conservation, 143(7), 1635–1645.

    Article  Google Scholar 

  • Lartillot, O., & Toiviainen, P. (2007). A matlab toolbox for musical feature extraction from audio, In International Conference on Digital Audio Effects (pp. 237–244).

  • Lartillot, O., Eerola, T., Toiviainen, P., & Fornari, J. (2008). Multi-feature modeling of pulse clarity: Design, validation and optimization., In ISMIR (pp. 521–526), Citeseer.

  • Lathi, B. P. (2004). Signal processing and linear systems. Oxford: Oxford University Press.

    Google Scholar 

  • Lee, C.-H., Han, C.-C., & Chuang, C.-C. (2008). Automatic classification of bird species from their sounds using two-dimensional cepstral coefficients. IEEE Transactions on Audio, Speech, and Language Processing, 16(8), 1541–1550.

    Article  Google Scholar 

  • Linhart, P., & Fuchs, R. (2015). Song pitch indicates body size and correlates with males’ response to playback in a songbird. Animal Behaviour, 103, 91–98.

    Article  Google Scholar 

  • Lopes, M. T., Gioppo, L. L., Higushi, T. T., Kaestner, C. A. A., Silla, Jr., C. N., & Koerich, A. L. (2011). Automatic bird species identification for large number of species, In IEEE International Symposium on Multimedia.

  • Lopes, M. T., Koerich, A. L., Kaestner, C. A. A., Silla, Jr., C. N. (2011). Feature set comparison for automatic bird species identification, In IEEE International Conference on Systems, Man, and Cybernetics, Anchorage, Alaska.

  • Luther, D., & Baptista, L. (2010). Urban noise and the cultural evolution of bird songs. Proceedings of the Royal Society of London B: Biological Sciences, 277(1680), 469–473.

    Article  Google Scholar 

  • Mellinger, D., & Bradbury, J. W. (2007). Acoustic measurement of marine mammal sounds in noisy environments, In Proceedings of the International Conference on Underwater Acoustical Measurements: Technologies and Results.

  • Mitchell, T. M. (1997). Machine learning. Maidenhead: McGraw-Hill.

    MATH  Google Scholar 

  • Rickwood, P., & Taylor, A. (2008). Methods for automatically analyzing humpback song units. Journal of the Acoustical Society of America, 123, 1763–1772.

    Article  Google Scholar 

  • Silla, C. N., & Kaestner, C. A. (2013). Hierarchical classification of bird species using their audio recorded songs (pp. 1895–1900). Washington, DC: IEEE Computer Society.

    Google Scholar 

  • Slabbekoorn, H., & Peet, M. (2003). Ecology: Birds sing at a higher pitch in urban noise. Nature, 424(6946), 267–267.

    Article  Google Scholar 

  • Somervuo, P., Harma, A., & Fagerlund, S. (2006). Parametric representations of bird sounds for automatic species recognition. IEEE Transactions on Audio, Speech and Language Processing, 14, 2252–2263.

    Article  Google Scholar 

  • Sun, R., Marye, Y. W., & Zhao, H. (2013). Wavelet transform digital sound processing to identify wild bird species, In Proceedings of the 2013 International Conference on Wavelet Analysis and Pattern Recognition.

  • Tsai, W.-H., Xu, Y.-Y., & Lin, W.-C. (2013). Bird species identification based on timbre and pitch features, In IEEE International Conference on Multimedia and Expo (pp. 1–6).

  • Vilches, E., Escobar, I., Vallejo, E., & Taylor, C. (2006). Data mining applied to acoustic bird species recognition, In Proceedings of the 18th IEEE International Conference on Pattern Recognition (ICPR’06).

  • Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques. San Francisco: Morgan Kaufmann Publishers.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Raghuram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghuram, M.A., Chavan, N.R., Belur, R. et al. Bird classification based on their sound patterns. Int J Speech Technol 19, 791–804 (2016). https://doi.org/10.1007/s10772-016-9372-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-016-9372-2

Keywords

Navigation