Skip to main content

Advertisement

Log in

Concentration-Dependent Thermal Duality of Hafnium Carbide Nanofluid for Heat Transfer Applications: A Mode Mismatched Thermal Lens Study

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The mode mismatch dual-beam thermal lens technique is a sensitive tool for studying the nanofluids’ thermal diffusivity in thermal engineering. The work reports the low-temperature green synthesis of hafnium carbide (HfC) using rice flour as a natural carbon precursor and its potential in heat transfer nanofluids by studying the concentration-dependent thermal diffusivity. The structure characterisations confirm the formation of HfC, whose refractory nature is revealed through the high thermal stability observed in the thermogravimetric analysis. The Tauc plot analysis shows direct bandgap energy of 2.92 eV. The fluorescence study suggests bluish-pink emission with CIE coordinates (0.271, 0.263). The existence of the critical concentration of HfC in the nanofluid decides its suitability for heat transfer or heat trap applications indicating a concentration-dependent thermal duality. Thus, the study is significant as it overcomes the major drawbacks of the existing methods of the synthesis of refractory HfC, using toxic chemical and costly equipment for heat transfer applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.U.S. Choi, W. Yu, T. Pradeep, S.K. Das, Nanofluids: Science and Technology (Wiley, Chichester, 2005).

    Google Scholar 

  2. K.R. Sreelakshmy, S.N. Aswathy, K.M. Vidhya, T.R. Saranya, C.N. Sreeja, Int. Res. J. Pharm. 5, 239 (2014)

    Article  Google Scholar 

  3. L.O. Usoltseva, M.V. Korobov, M.A. Proskurnin, J. Appl. Phys. 128, 190901 (2020)

    Article  ADS  Google Scholar 

  4. S.U.S. Choi, J.A. Eastman, Am. Soc. Mech. Eng. Fluids Eng. Div. FED 231, 99 (1995)

    Google Scholar 

  5. M. Awais, N. Ullah, J. Ahmad, F. Sikandar, M.M. Ehsan, S. Salehin, A.A. Bhuiyan, Int. J. Thermofluids 9, 100065 (2021)

    Article  Google Scholar 

  6. J. Fan, L. Wang, J. Heat Transf. 133, 040801 (2013)

    Article  Google Scholar 

  7. M.S. Swapna, S. Sankararaman, Int. J. Thermophys. 41, 93 (2020)

    Article  ADS  Google Scholar 

  8. V. Raj, S. Soumya, M.S. Swapna, S. Sankararaman, Mater. Res. Express 5, 115504 (2018)

    Article  ADS  Google Scholar 

  9. M. Franko, C.D. Tran, Rev. Sci. Instrum. 67, 1 (1996)

    Article  ADS  Google Scholar 

  10. A. Marcano, H. Cabrera, M. Guerra, R.A. Cruz, C. Jacinto, T. Catunda, J. Opt. Soc. Am. B 23, 1408 (2006)

    Article  ADS  Google Scholar 

  11. J. Shen, R.D. Lowe, R.D. Snook, Chem. Phys. 165, 385 (1992)

    Article  Google Scholar 

  12. R.D. Snook, R.D. Lowe, Analyst 120, 2051 (1995)

    Article  ADS  Google Scholar 

  13. C. Hu, J.R. Whinnery, Appl. Opt. 12, 72 (1973)

    Article  ADS  Google Scholar 

  14. H.O. Pierson, Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Apps (Noyes Publication Park Ridge, Park Ridge, 1996).

    Google Scholar 

  15. M.S. Swapna, H.V. Saritha Devi, R. Sebastian, G. Ambadas, S. Sankararaman, Mater. Res. Express 4, 125602 (2017)

    Article  ADS  Google Scholar 

  16. J. Wu, W. Wang, C. Liu, J. Wuhan Univ. Technol. Mater. Sci. Ed. 33, 843 (2018)

    Article  Google Scholar 

  17. M.S. Swapna, H.V. Saritha Devi, S. Sankararaman, Mater. Res. Express 6, 105622 (2019)

    Article  ADS  Google Scholar 

  18. A.I. Savvatimskii, S.V. Onufriev, High Temp. 58, 800 (2020)

    Article  Google Scholar 

  19. H. Liang, L. Fang, S. Guan, F. Peng, Z. Zhang, H. Chen, W. Zhang, C. Lu, Inorg. Chem. 60, 515 (2021)

    Article  Google Scholar 

  20. K. Hans, S. Latha, P. Bera, H.C. Barshilia, Sol. Energy Mater. Sol. Cells 185, 1 (2018)

    Article  Google Scholar 

  21. R. Rajappan, J. Gokulakrishnan, G. Gurunathan, K. Chandrasekar, IOP Conf. Ser. Mater. Sci. Eng. 1057, 012020 (2021)

    Article  Google Scholar 

  22. A. Sayir, J. Mater. Sci. 39, 5995 (2004)

    Article  ADS  Google Scholar 

  23. N. Patra, N. Al Nasiri, D.D. Jayaseelan, W.E. Lee, Ceram. Int. 42, 1959 (2016)

    Article  Google Scholar 

  24. B. Matovic, B. Babic, D. Bucevac, M. Cebela, V. MaksimoviC, J. Pantić, M. Miljkovic, Ceram. Int. 39, 719 (2013)

    Article  Google Scholar 

  25. H.V. Sarithadevi, M.S. Swapna, G. Ambadas, S. Sankararaman, Chin. Phys. B 27, 10 (2018)

    Article  Google Scholar 

  26. H.V.S. Devi, M.S. Swapna, V. Raj, G. Ambadas, S. Sankararaman, Mater. Res. Express 5, 15603 (2018)

    Article  Google Scholar 

  27. F. Li, Y. Lu, X.G. Wang, W. Bao, J.X. Liu, F. Xu, G.J. Zhang, Ceram. Int. 45, 22437 (2019)

    Article  Google Scholar 

  28. D. Lu, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, Z. Fu, Ceram. Int. 42, 8108 (2016)

    Article  Google Scholar 

  29. A. Asadi, F. Pourfattah, I. Miklós Szilagyi, M. Afrand, G. Zyła, H. Seon Ahn, S. Wongwises, H. Minh Nguyen, A. Arabkoohsar, O. Mahian, Ultrason. Sonochem. 58, 104701 (2019)

    Article  Google Scholar 

  30. B. Ma, D. Banerjee, in Advances in Nanomaterials. ed. by G. Balasubramanian (Springer, Cham, 2019), p. 135. https://doi.org/10.1007/978-3-319-64717-3_6

    Chapter  Google Scholar 

  31. A. Afzal, I. Nawfal, I.M. Mahbubul, S.S. Kumbar, J. Therm. Anal. Calorim. 135, 393 (2019)

    Article  Google Scholar 

  32. V.A. Hackley, M.R. Wiesner, CEINT, Natl. Inst. Stand. Technol. 1200, 2 (2012)

    Google Scholar 

  33. E. Barraud, S. Bégin-Colin, G. Le Caër, O. Barres, F. Villieras, J. Alloys Compd. 456, 224 (2008)

    Article  Google Scholar 

  34. A.L. Patterson, Phys. Rev. 56, 978 (1939)

    Article  ADS  Google Scholar 

  35. H.B. Ramalingam, B.C. Shekaran, J. Manikantan, R.R. Kumar, J.S. Santhoshi, B. Murugan, Int. J. Control. Theory Appl. 10, 38 (2017)

    Google Scholar 

  36. W.F. Piedrahita, W. Aperador, J.C. Caicedo, P. Prieto, J. Alloys Compd. 690, 485 (2017)

    Article  Google Scholar 

  37. M.S. Swapna, S. Sankararaman, J. Fluoresc. 28, 543 (2018)

    Article  Google Scholar 

  38. B. Rajesh Kumar, N. Shemeena Basheer, S. Jacob, A. Kurian, S.D. George, J. Therm. Anal. Calorim. 119, 453 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sankararaman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gokul, V., Swapna, M.S., Raj, V. et al. Concentration-Dependent Thermal Duality of Hafnium Carbide Nanofluid for Heat Transfer Applications: A Mode Mismatched Thermal Lens Study. Int J Thermophys 42, 109 (2021). https://doi.org/10.1007/s10765-021-02859-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02859-0

Keywords

Navigation