Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Consequences of Binary Chemically Reactive Flow Configuration of Williamson Fluid with Entropy Optimization and Activation Energy

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

This article was retracted on 14 September 2021

This article has been updated

Abstract

Modeling for boundary layer stagnation point flow of Williamson fluid is developed. Electrically conducting liquid in presence of constant magnetic field is considered. Fluid is conducting. Induced magnetic field is accounted. Energy equation is modeled subject to radiative heat flux, heat source/sink and dissipation. Concentration equation for binary chemical reaction with activation energy is examined. Volumetric entropy rate is computed employing second law of thermodynamics. Nonlinear system numerically solved. Outcomes of velocity, temperature, entropy generation and concentration are carefully examined. Nusselt number and skin friction coefficient are numerically discussed. The obtained results are matched in an excellent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Change history

References

  1. A. Bejan, A study of entropy generation in fundamental convective heat transfer. ASME J. Heat Transf. 101, 718–725 (1979)

    Article  Google Scholar 

  2. A. Bejan, Second-law analysis in heat transfer and thermal design. Adv. Heat Transf. 15, 1–58 (1982)

    Article  Google Scholar 

  3. T. Hayat, M.I. Khan, S. Qayyum, A. Alsaedi, Entropy generation in flow with silver and copper nanoparticles. Colloids Surf. A 539, 335–346 (2018)

    Article  Google Scholar 

  4. M. Kiyasatfar, Convective heat transfer and entropy generation analysis of non-Newtonian power-law fluid flows in parallel-plate and circular microchannels under slip boundary conditions. Int. J. Therm. Sci. 128, 15–27 (2018)

    Article  Google Scholar 

  5. T. Hayat, S. Qayyum, M.I. Khan, A. Alsaedi, Entropy generation in magnetohydrodynamic radiative flow due to rotating disk in presence of viscous dissipation and Joule heating. Phys. Fluids 30, 017101 (2018)

    Article  ADS  Google Scholar 

  6. M.W.A. Khan, M.I. Khan, T. Hayat, A. Alsaedi, Entropy generation minimization (EGM) of nanofluid flow by a thin moving needle with nonlinear thermal radiation. Phys. B 534, 113–119 (2018)

    Article  ADS  Google Scholar 

  7. J. Escandón, O. Bautista, F. Méndez, Entropy generation in purely electroosmotic flows of non-Newtonian fluids in a microchannel. Energy 55, 486–496 (2013)

    Article  Google Scholar 

  8. M.I. Khan, T. Yasmeen, M.I. Khan, M. Farooq, M. Wakeel, Research progress in the development of natural gas as fuel for road vehicles: a bibliographic review (1991–2016). Renew. Sustain. Energy Rev. 66, 702–741 (2016)

    Article  Google Scholar 

  9. T. Hayat, M.I. Khan, S. Qayyum, A. Alsaedi, M.I. Khan, New thermodynamics of entropy generation minimization with nonlinear thermal radiation and nanomaterials. Phys. Lett. A 382, 749–760 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. N.V. Ganesh, Q.M. Al-Mdallal, A.J. Chamkha, A numerical investigation of Newtonian fluid flow with buoyancy, thermal slip of order two and entropy generation. Case Stud. Therm. Eng. 13, 100376 (2019)

    Article  Google Scholar 

  11. M.I. Khan, S. Sumaira, T. Hayat, M. Waqas, M.I. Khan, A. Alsaedi, Entropy generation minimization and binary chemical reaction with Arrhenius activation energy in MHD radiative flow of nanomaterial. J. Mol. Liq. 259, 274–283 (2018)

    Article  Google Scholar 

  12. M.I. Khan, T. Hayat, M. Waqas, M.I. Khan, A. Alsaedi, Entropy generation minimization (EGM) in nonlinear mixed convective flow of nanomaterial with Joule heating and slip condition. J. Mol. Liq. 256, 108–120 (2018)

    Article  Google Scholar 

  13. M.V. Bozorg, M. Siavashi, Two-phase mixed convection heat transfer and entropy generation analysis of a non-Newtonian nanofluid inside a cavity with internal rotating heater and cooler. Int. J. Mech. Sci. 151, 842–857 (2019)

    Article  Google Scholar 

  14. M.I. Khan, S. Ullah, T. Hayat, M.I. Khan, A. Alsaedi, Entropy generation minimization (EGM) for convection nanomaterial flow with nonlinear radiative heat flux. J. Mol. Liq. 260, 279–291 (2018)

    Article  Google Scholar 

  15. M.P. Boruah, S. Pati, P.R. Randive, Implication of fluid rheology on the hydrothermal and entropy generation characteristics for mixed convective flow in a backward facing step channel with baffle. Int. J. Heat Mass Transf. 137, 138–160 (2019)

    Article  Google Scholar 

  16. M.I. Khan, S. Qayyum, T. Hayat, M.I. Khan, A. Alsaedi, T.A. Khan, Entropy generation in radiative motion of tangent hyperbolic nanofluid in presence of activation energy and nonlinear mixed convection. Phys. Lett. A 382, 2017–2026 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. Z. Xie, Y. Jian, Entropy generation of magnetohydrodynamic electroosmotic flow in two-layer systems with a layer of non-conducting viscoelastic fluid. Int. J. Heat Mass Transf. 127, 600–615 (2018)

    Article  Google Scholar 

  18. S. Qayyum, T. Hayat, M.I. Khan, M.I. Khan, A. Alsaedi, Optimization of entropy generation and dissipative nonlinear radiative Von Karman’s swirling flow with Soret and Dufour effects. J. Mol. Liq. 262, 261–274 (2018)

    Article  Google Scholar 

  19. Y. Liu, Y. Jian, W. Tan, Entropy generation of electromagnetohydrodynamic (EMHD) flow in a curved rectangular microchannel. Int. J. Heat Mass Transf. 127, 901–913 (2018)

    Article  Google Scholar 

  20. T. Hayat, M.I. Khan, T.A. Khan, M.I. Khan, S. Ahmad, A. Alsaedi, Entropy generation in Darcy-Forchheimer bidirectional flow of water-based carbon nanotubes with convective boundary conditions. J. Mol. Liq. 265, 629–638 (2018)

    Article  Google Scholar 

  21. M.M. Rashidi, S. Bagheri, E. Momoniat, N. Freidoonimehr, Entropy analysis of convective MHD flow of third grade non-Newtonian fluid over a stretching sheet. Ain Shams Eng. J. 8, 77–85 (2017)

    Article  Google Scholar 

  22. T. Hayat, M.I. Khan, S. Qayyum, M.I. Khan, A. Alsaedi, Entropy generation for flow of Sisko fluid due to rotating disk. J. Mol. Liq. 264, 375–385 (2018)

    Article  Google Scholar 

  23. G.J. Reddy, M. Kumar, O.A. Beg, Effect of temperature dependent viscosity on entropy generation in transient viscoelastic polymeric fluid flow from an isothermal vertical plate. Phys. A 510, 426–445 (2018)

    Article  MathSciNet  Google Scholar 

  24. M.I. Khan, T. Hayat, A. Alsaedi, S. Qayyum, M. Tamoor, Entropy optimization and quartic autocatalysis in MHD chemically reactive stagnation point flow of Sisko nanomaterial. Int. J. Heat Mass Transf. 127, 829–837 (2018)

    Article  Google Scholar 

  25. M. Shojaeian, A. Koşar, Convective heat transfer and entropy generation analysis on Newtonian and non-Newtonian fluid flows between parallel-plates under slip boundary conditions. Int. J. Heat Mass Transf. 70, 664–673 (2014)

    Article  Google Scholar 

  26. S. Qayyum, M.I. Khan, T. Hayat, A. Alsaedi, M. Tamoor, Entropy generation in dissipative flow of Williamson fluid between two rotating disks. Int. J. Heat Mass Transf. 127, 933–942 (2018)

    Article  Google Scholar 

  27. D. Srinivasacharya, K.H. Bindu, Entropy generation due to micropolar fluid flow between concentric cylinders with slip and convective boundary conditions. Ain Shams Eng. J. 9, 245–255 (2018)

    Article  Google Scholar 

  28. S. Ahmad, M.I. Khan, T. Hayat, M.I. Khan, A. Alsaedi, Entropy generation optimization and unsteady squeezing flow of viscous fluid with five different shapes of nanoparticles. Colloids Surf. A 554, 197–210 (2018)

    Article  Google Scholar 

  29. G.H.R. Kefayati, N.A.C. Sidik, Simulation of natural convection and entropy generation of non-Newtonian nanofluid in an inclined cavity using Buongiorno’s mathematical model (Part II, entropy generation). Powder Technol. 305, 679–703 (2017)

    Article  Google Scholar 

  30. M.I. Khan, S. Qayyum, T. Hayat, A. Alsaedi, M.I. Khan, Investigation of Sisko fluid through entropy generation. J. Mol. Liq. 257, 155–163 (2018)

    Article  Google Scholar 

  31. M. Khan, M. Irfan, W.A. Khan, Heat transfer enhancement for Maxwell nanofluid flow subject to convective heat transport. Pramana 92, 17 (2018)

    Article  ADS  Google Scholar 

  32. M. Irfan, M. Khan, W.A. Khan, Interaction between chemical species and generalized Fourier’s law on 3D flow of Carreau fluid with variable thermal conductivity and heat sink/source: a numerical approach. Results Phys. 10, 107–117 (2018)

    Article  ADS  Google Scholar 

  33. Q. Hussain, N. Alvi, T. Latif, S. Asghar, Radiative heat transfer in Powell–Eyring nanofluid with peristalsis. Int. J. Thermophys. 40, 46 (2019)

    Article  ADS  Google Scholar 

  34. T. Hayat, M.I. Khan, M. Farooq, A. Alsaedi, M. Waqas, T. Yasmeen, Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int. J. Heat Mass Transf. 99, 702–710 (2016)

    Article  Google Scholar 

  35. M.A. Taghikhani, Cu–Water nanofluid MHD mixed convection in a lid-driven cavity with two sinusoidal heat sources considering Joule heating effect. Int. J. Thermophys. 40, 44 (2019)

    Article  ADS  Google Scholar 

  36. M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, A comparative study of Casson fluid with homogeneous-heterogeneous reactions. J. Colloid Interface Sci. 498, 85–90 (2017)

    Article  ADS  Google Scholar 

  37. Š. Hardoň, J. Kúdelčík, E. Jahoda, M. Kúdelčíková, The magneto-dielectric anisotropy effect in the oil-based ferrofluid. Int. J. Thermophys. 40, 24 (2019)

    Article  ADS  Google Scholar 

  38. M.I. Khan, T. Hayat, M.I. Khan, M. Waqas, A. Alsaedi, Numerical simulation of hydromagnetic mixed convective radiative slip flow with variable fluid properties: a mathematical model for entropy generation. J. Phys. Chem. Solids 125, 53–164 (2019)

    Article  Google Scholar 

  39. A. Bicer, F. Kar, A model for determining the effective thermal conductivity of porous heterogeneous materials. Int. J. Thermophys. 40, 9 (2019)

    Article  ADS  Google Scholar 

  40. M. Sheikholeslami, S. Saleem, A. Shafee, Z. Li, T. Hayat, A. Alsaedi, M.I. Khan, Mesoscopic investigation for alumina nanofluid heat transfer in permeable medium influenced by Lorentz forces. Comput. Methods Appl. Mech. Eng. 349, 839–858 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. M. Irfan, M. Khan, W.A. Khan, M. Ayaz, Modern development on the features of magnetic field and heat sink/source in Maxwell nanofluid subject to convective heat transport. Phys. Lett. A 382, 1992–2002 (2018)

    Article  ADS  Google Scholar 

  42. S. Malekian, E. Fathi, N. Malekian, H. Moghadasi, M. Moghimi, Analytical and numerical investigations of unsteady graphene oxide nanofluid flow between two parallel plates. Int. J. Thermophys. 39, 100 (2018)

    Article  ADS  Google Scholar 

  43. M. Khan, M. Irfan, W.A. Khan, Impact of heat source/sink on radiative heat transfer to Maxwell nanofluid subject to revised mass flux condition. Results Phys. 9, 851–857 (2018)

    Article  ADS  Google Scholar 

  44. M. Waqas, S. Jabeen, T. Hayat, M.I. Khan, A. Alsaedi, Modeling and analysis for magnetic dipole impact in nonlinear thermally radiating Carreau nanofluid flow subject to heat generation. J. Magn. Magn. Mater. 485, 197–204 (2019)

    Article  ADS  Google Scholar 

  45. K.A. Yih, Free convection effect on MHD coupled heat and mass transfer of a moving permeable vertical surface. Int. Commun. Heat Mass Transf. 26, 95–104 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ijaz Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ijaz Khan, M., Alsaedi, A., Qayyum, S. et al. RETRACTED ARTICLE: Consequences of Binary Chemically Reactive Flow Configuration of Williamson Fluid with Entropy Optimization and Activation Energy. Int J Thermophys 40, 94 (2019). https://doi.org/10.1007/s10765-019-2563-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2563-8

Keywords

Navigation