Skip to main content
Log in

Concentration-Dependent Diffusion Coefficients of Binary Gas Mixtures Using a Loschmidt Cell with Holographic Interferometry

Part II: Single Experiment

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A model-based experimental approach is presented to measure concentration-dependent diffusion coefficients of binary gases from a single experimental run. The diffusion experiments are performed with a Loschmidt cell combined with holographic interferometry that has been improved in Part I of this paper (Wolff et al. in Int. J. Thermophys. 2018, https://doi.org/10.1007/s10765-018-2450-8). Measurements are taken with the system helium–krypton. Besides highly accurate measurements, a highly accurate diffusion model is required to retrieve the weak concentration dependence of the diffusion coefficient. We derive a consistent diffusion model considering real gas effects and the concentration dependence of the diffusion coefficient. The model describes the experimental fringe data with deviations of less than 0.2 interference fringe orders, which corresponds to a relative deviation of 0.17 % indicating high quality of both the experimental data and the employed model. Therefore, the concentration dependence of the helium–krypton diffusion coefficient could be successfully retrieved from a single experiment of mixing pure gases. Thus, the presented approach allows for the efficient characterization of diffusion in gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E.L. Cussler, Diffusion—Mass Transfer in Fluid Systems (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  2. R.J.J. van Heijningen, J.P. Harpe, J.J.M. Beenakker, Physica 38, 1 (1968). https://doi.org/10.1016/0031-8914(68)90059-1

    Article  ADS  Google Scholar 

  3. G.R. Staker, P.J. Dunlop, K.R. Harris, T.N. Bell, Chem. Phys. Lett. 32, 561 (1975). https://doi.org/10.1016/0009-2614(75)85240-7

    Article  ADS  Google Scholar 

  4. P.J. Carson, P.J. Dunlop, Chem. Phys. Lett. 14, 377 (1972). https://doi.org/10.1016/0009-2614(72)80137-4

    Article  ADS  Google Scholar 

  5. G.R. Staker, M.A. Yabsley, J.M. Symons, P.J. Dunlop, J. Chem. Soc. Farad. Trans. 1, 825 (1974). https://doi.org/10.1039/F19747000825

    Article  Google Scholar 

  6. P.J. Carson, P.J. Dunlop, T.N. Bell, J. Chem. Phys. 56, 531 (1972). https://doi.org/10.1063/1.1676900

    Article  ADS  Google Scholar 

  7. P.S. Arora, P.J. Carson, P.J. Dunlop, Chem. Phys. Lett. 54, 117 (1978). https://doi.org/10.1016/0009-2614(78)85678-4

    Article  ADS  Google Scholar 

  8. T.R. Marrero, E.A. Mason, J. Phys. Chem. Ref. Data 1, 3 (1972). https://doi.org/10.1063/1.3253094

    Article  ADS  Google Scholar 

  9. L. Wolff, P. Zangi, T. Brands, M.H. Rausch, H.J. Koß, A.P. Fröba, A. Bardow, Int. J. Thermophys. (2018). https://doi.org/10.1007/s10765-018-2450-8

    Article  Google Scholar 

  10. P.K. Gupta, A.R. Cooper, Physica 54, 39 (1971)

    Article  ADS  Google Scholar 

  11. J.C. Clunie, N. Li, M.T. Emerson, J.K. Baird, J. Phys. Chem. 94, 6099 (1990). https://doi.org/10.1021/j100378a085

    Article  Google Scholar 

  12. C. Durou, C. Moutou, J. Mahenc, J. Chim. Phys. 71, 271 (1974). https://doi.org/10.1051/jcp/1974710271

    Article  Google Scholar 

  13. A. Bardow, V. Göke, H.J. Koß, K. Lucas, W. Marquardt, Fluid Phase Equilib. 228, 357 (2005). https://doi.org/10.1016/j.fluid.2004.08.017

    Article  Google Scholar 

  14. E. Kriesten, M.A. Voda, A. Bardow, V. Göke, F. Casanova, B. Blümich, H.J. Koß, W. Marquardt, Fluid Phase Equilib. 277, 96 (2009). https://doi.org/10.1016/j.fluid.2008.10.012

    Article  Google Scholar 

  15. A. Bouchaudy, C. Loussert, J.B. Salmon, AIChE J. (2017). https://doi.org/10.1002/aic.15890

    Article  Google Scholar 

  16. T. Kugler, B. Jäger, E. Bich, M.H. Rausch, A.P. Fröba, Int. J. Thermophys. 34, 47 (2013). https://doi.org/10.1007/s10765-012-1352-4

    Article  ADS  Google Scholar 

  17. T. Kugler, M.H. Rausch, A.P. Fröba, Int. J. Thermophys. 36, 3169 (2015). https://doi.org/10.1007/s10765-015-1981-5

    Article  ADS  Google Scholar 

  18. M. Kullnick, Interferometrische Untersuchung der Diffusion in binären Gemischen realer Gase mit einer Loschmidt-Diffusionsapparatur. Dissertation, Technical University of Braunschweig (2001)

  19. J. Baranski, Bestimmung binärer Diffusionskoeffizienten von Gasen mit einer Loschmidt-Zelle und holografischer Interferometrie. Dissertation, Universität Rostock, Rostock (2002)

  20. D. Buttig, E. Vogel, E. Bich, E. Hassel, Meas. Sci. Technol. 22, 105409 (2011). https://doi.org/10.1088/0957-0233/22/10/105409

    Article  ADS  Google Scholar 

  21. T. Kugler, B. Jäger, E. Bich, M.H. Rausch, A.P. Fröba, Int. J. Thermophys. 36, 3116 (2015). https://doi.org/10.1007/s10765-015-1966-4

    Article  ADS  Google Scholar 

  22. J. Crank, The Mathematics of Diffusion (Clarendon Press, Oxford, 1975)

    MATH  Google Scholar 

  23. J. Bausa, W. Marquardt, AIChE J. 47, 1318 (2001). https://doi.org/10.1002/aic.690470610

    Article  Google Scholar 

  24. J. Gmehling, B. Kolbe, M. Kleiber, J. Rarey, Chemical Thermodynamics for Process Simulation (Wiley, Hoboken, 2012)

    Google Scholar 

  25. Y. Bard, Nonlinear Parameter Estimation (Academic Press, New York, 1973)

    MATH  Google Scholar 

  26. B.N. Srivastava, R. Paul, Physica 28, 646 (1962). https://doi.org/10.1016/0031-8914(62)90120-9

    Article  ADS  Google Scholar 

  27. J. Kestin, K. Knierim, E.A. Mason, B. Najafi, S.T. Ro, M. Waldman, J. Phys. Chem. Ref. Data 13, 229 (1984). https://doi.org/10.1063/1.555703

    Article  ADS  Google Scholar 

  28. W. Hogervorst, Physica 51, 59 (1971). https://doi.org/10.1016/0031-8914(71)90137-6

    Article  ADS  Google Scholar 

  29. G.R. Staker, P.J. Dunlop, Chem. Phys. Lett. 42, 419 (1976). https://doi.org/10.1016/0009-2614(76)80643-4

    Article  ADS  Google Scholar 

  30. T. Kugler, Determination of Gaseous Binary Diffusion Coefficients Using a Loschmidt Cell Combined with Holographic Interferometry. Dissertation, Universität Erlangen-Nürnberg (2015)

  31. H.J. Achtermann, J.G. Hong, G. Magnus, R.A. Aziz, M.J. Slaman, J. Chem. Phys. 98, 2308 (1993). https://doi.org/10.1063/1.464212

    Article  ADS  Google Scholar 

  32. D.R. MacQuigg, Appl. Opt. 16, 291 (1977). https://doi.org/10.1364/AO.16.000291

    Article  ADS  Google Scholar 

  33. D.B. Neumann, H.W. Rose, Appl. Opt. 6, 1097 (1967). https://doi.org/10.1364/AO.6.001097

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) with Grants BA 2884/7-1 and FR 1709/13-1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ludger Wolff or André Bardow.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Materials:

See Supplementary Material for numerical values of diffusion coefficients from our experiments and from literature. (pdf 152KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolff, L., Zangi, P., Brands, T. et al. Concentration-Dependent Diffusion Coefficients of Binary Gas Mixtures Using a Loschmidt Cell with Holographic Interferometry. Int J Thermophys 39, 132 (2018). https://doi.org/10.1007/s10765-018-2451-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2451-7

Keywords

Navigation