Skip to main content
Log in

Thermal Conductivity and Thermal Boundary Resistances of ALD Al\(_{2}\)O\(_{3}\) Films on Si and Sapphire

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

On Si and sapphire substrates, 6–45 nm thick films of atomic layer-deposited Al\(_{2}\)O\(_{3}\) were grown. The thermal conductivity of ALD films has been determined from a linear relation between film thickness and thermal resistance measured by the 3\(\omega \) method. ALD films on Si and sapphire showed almost same thermal conductivity in the temperature range of 50–350 K. Residual thermal resistance was also obtained by extrapolation of the linear fit and was modeled as a sum of the thermal boundary resistances at heater–film and film–substrate interfaces. The total thermal resistance addenda for films on sapphire was close to independently measured thermal boundary resistance of heater–sapphire interface. From the result, it was deduced that the thermal boundary resistance at ALD Al\(_{2}\)O\(_{3}\)–sapphire interface was much lower than that of heater–film. By contrast, the films on Si showed significantly larger thermal boundary resistance than films on sapphire. Data of \(< 30\) nm films on Si were excluded because an AC coupling of electrical heating voltage to semiconductive Si complicated the relation between 3\(\omega \) voltage and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.W. Ott, J.W. Klaus, J.M. Johnson, S.M. George, Thin Solid Films 292, 135 (1997)

    Article  ADS  Google Scholar 

  2. J.W. Elam, S.M. George, Chem. Mater. 15, 1020 (2003)

    Article  Google Scholar 

  3. M.D. Groner, F.H. Fabreguette, J.W. Elam, S.M. George, Chem. Mater. 16, 639 (2004)

    Article  Google Scholar 

  4. D.G. Cahill et al., J. Appl. Phys. 93, 793–818 (2003)

    Article  ADS  Google Scholar 

  5. D.G. Cahill et al., Appl. Phys. Rev. 1, 011305 (2014)

    Article  ADS  Google Scholar 

  6. D.W. Oh, Adv. Mater. 23, 50285033 (2011)

  7. R.B. Wilson et al., Phys. Rev. B 91, 115414 (2015)

    Article  ADS  Google Scholar 

  8. D.G. Cahill, Rev. Sci. Instrum. 61, 802–808 (1990)

    Article  ADS  Google Scholar 

  9. S.E. Gustafsson, E. Karawacki, M.A. Chohan, J. Phys. D: Appl. Phys. 19, 727 (1986)

    Article  ADS  Google Scholar 

  10. D.G. Cahill, S.-M. Lee, T.I. Selinder, J. Appl. Phys. 83, 5783–5786 (1998)

    Article  ADS  Google Scholar 

  11. A.J. Griffin Jr., F.R. Brotzen, P.J. Loos, J. Appl. Phys. 75, 3761–3764 (1994)

    Article  ADS  Google Scholar 

  12. S.-M. Lee, D.G. Cahill, T.H. Allen, Phys. Rev. B 52, 253–257 (1995)

    Article  ADS  Google Scholar 

  13. S.-M. Lee, D.G. Cahill, J. Appl. Phys. 81, 2590–2595 (1997)

    Article  ADS  Google Scholar 

  14. T. Borca-Tasciuc, A.R. Kumar, G. Chen, Rev. Sci. Instrum. 72, 2139–2147 (2001)

    Article  ADS  Google Scholar 

  15. C. Monachon, L. Weber, Adv. Eng. Mater. 17, 68–75 (2015)

    Article  Google Scholar 

  16. C.S. Gorham et al., Appl. Phys. Lett. 104, 253107 (2014)

    Article  ADS  Google Scholar 

  17. S.-M. Lee, Rev. Sci. Instrum. 80, 024901 (2009)

    Article  ADS  Google Scholar 

  18. D.A. Ditmars, S. Ishihara, S.S. Chang, G. Bernstein, J. Res. Natl. Bur. Stand 87, 159–163 (1982)

    Article  Google Scholar 

  19. P.D. Desai, J. Phys. Chem. Ref. Data 15, 967–983 (1986)

    Article  ADS  Google Scholar 

  20. R. Cheaito et al., Phys. Rev. B 91, 035432 (2015)

    Article  ADS  Google Scholar 

  21. S.-M. Lee et al., High Temp. High Press. 45, 439–449 (2016)

    Google Scholar 

  22. C. Monachon, L. Weber, C. Dames, Ann. Rev. Mater. Res. 46, 433–463 (2016)

    Article  ADS  Google Scholar 

  23. D.G. Cahill, S.K. Watson, R.O. Pohl, Phys. Rev. B 46, 6131 (1992)

    Article  ADS  Google Scholar 

  24. R.J. Stoner, H.J. Maris, Phys. Rev. B 48, 16373 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support from the R&D Convergence Program of NST (National Research Council of Science & Technology) of the Republic of Korea. This material was also supported by the Materials and Components Technology Development Program. of MOTIE/KEIT, Republic of Korea [No.10063286, “Development of high efficient thermoelectric module with figure of merit (Z) 3.4(\(\times \) \(10^{-3}\)) by using 1.0 kg/batch scale producible polycrystalline thermoelectric material with average figure of merit (ZT) 1.4 and over”].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Min Lee.

Additional information

Special Issue: Advances in Thermophysical Properties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SM., Choi, W., Kim, J. et al. Thermal Conductivity and Thermal Boundary Resistances of ALD Al\(_{2}\)O\(_{3}\) Films on Si and Sapphire. Int J Thermophys 38, 176 (2017). https://doi.org/10.1007/s10765-017-2308-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2308-5

Keywords

Navigation