Skip to main content
Log in

Thermal Conductivity of Ionic Liquids: Measurement and Prediction

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This study reports thermal-conductivity data for a series of [EMIM] (1-ethyl-3-methylimidazolium)-based ionic liquids (ILs) having the anions [NTf2] (bis(trifluoromethylsulfonyl)imide), [OAc] (acetate), [N(CN)2] (dicyanimide), [C(CN)3] (tricyanomethide), [MeOHPO2] (methylphosphonate), [EtSO4] (ethylsulfate), or [OcSO4] (octylsulfate), and in addition for ILs with the [NTf2]-anion having the cations [HMIM] (1-hexyl-3-methylimidazolium), [OMA] (methyltrioctylammonium), or [BBIM] (1,3-dibutylimidazolium). Measurements were performed in the temperature range between (273.15 and 333.15) K by a stationary guarded parallel-plate instrument with a total measurement uncertainty of 3 % (k = 2). For all ILs, the temperature dependence of the thermal conductivity can well be represented by a linear equation. While for the [NTf2]-based ILs, a slight increase of the thermal conductivity with increasing molar mass of the cation is found at a given temperature, the [EMIM]-based ILs show a pronounced, approximately linear decrease with increasing molar mass of the different probed anions. Based on the experimental data obtained in this study, a simple relationship between the thermal conductivity, molar mass, and density is proposed for the prediction of the thermal-conductivity data of ILs. For this, also densities were measured for [EMIM][OAc], [EMIM][C(CN)3], and [HMIM][NTf2]. The mean absolute percentage deviation of all thermal-conductivity data for ILs found in the literature from the proposed prediction is about 7 %. This result represents a convenient simplification in the acquisition of thermal conductivity information for the enormous amount of structurally different IL cation/anion combinations available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Torimoto T., Tsuda T., Okazaki K., Kuwabata S.: Adv. Mater. 22, 1196 (2010)

    Article  Google Scholar 

  2. Armand M., Endres F., MacFarlane D.R., Ohno H., Scrosati B.: Nat. Mater. 8, 621 (2009)

    Article  ADS  Google Scholar 

  3. Wishart J.F.: Energy Environ. Sci. 2, 956 (2009)

    Article  Google Scholar 

  4. Plechkova N.V., Seddon K.R.: Chem. Soc. Rev. 37, 123 (2008)

    Article  Google Scholar 

  5. El Seoud O.A., Koschella A., Fidale L.C., Dorn S., Heinze T.: Biomacromolecules 8, 2629 (2007)

    Article  Google Scholar 

  6. Zhao H.: Chem. Eng. Commun. 193, 1660 (2006)

    Article  Google Scholar 

  7. Chiappe C., Pieraccini D.: J. Phys. Org. Chem. 18, 275 (2005)

    Article  Google Scholar 

  8. Wasserscheid P., Keim W.: Angew. Chem. Int. Ed. 39, 3772 (2000)

    Google Scholar 

  9. Jork C., Kristen C., Pieraccini D., Stark A., Chiappe C., Beste Y.A., Arlt W.: J. Chem. Thermodyn. 37, 537 (2005)

    Article  Google Scholar 

  10. Sakaebe H., Matsumoto H., Tatsumi K.: Electrochim. Acta 53, 1048 (2007)

    Article  Google Scholar 

  11. Jiménez A.-E., Bermúdez M.-D.: Tribol. Lett. 26, 53 (2007)

    Article  Google Scholar 

  12. Van Valkenburg M.E., Vaughn R.L., Williams M., Wilkes J.S.: Thermochim. Acta 425, 181 (2005)

    Article  Google Scholar 

  13. J.S. Wilkes, in Ionic Liquids in Synthesis, ed. by P. Wasserscheid, T. Welton (Wiley-VCH, Weinheim, 2003), p. 2

  14. Tochigi K., Yamamoto H.: J. Phys. Chem. C 111, 15989 (2007)

    Article  Google Scholar 

  15. Zhang S., Sun N., He X., Lu X., Zhang X.: J. Phys. Chem. Ref. Data 35, 1475 (2006)

    Article  ADS  Google Scholar 

  16. Deetlefs M., Seddon K.R., Shara M.: Phys. Chem. Chem. Phys. 8, 642 (2006)

    Article  Google Scholar 

  17. Gardas R.L., Coutinho J.A.P.: AIChE J. 55, 1274 (2009)

    Article  Google Scholar 

  18. França J.M.P., Nieto de Castro C.A., Lopes M.M., Nunes V.M.B.: J. Chem. Eng. Data 54, 2569 (2009)

    Article  Google Scholar 

  19. Frez C., Diebold G.J., Tran C.D., Yu S.: J. Chem. Eng. Data 51, 1250 (2006)

    Article  Google Scholar 

  20. Tomida D., Kenmochi S., Tsukada T., Yokoyama C.: Netsu Bussei 20, 173 (2006)

    Article  Google Scholar 

  21. Tomida D., Kenmochi S., Tsukada T., Qiao K., Yokoyama C.: Int. J. Thermophys. 28, 1147 (2007)

    Article  Google Scholar 

  22. Ge R., Hardacre C., Nancarrow P., Rooney D.W.: J. Chem. Eng. Data 52, 1819 (2007)

    Article  Google Scholar 

  23. Chen H., He Y., Zhu J., Alias H., Ding Y., Nancarrow P., Hardacre C., Rooney D., Tan C.: Int. J. Heat Fluid Flow 29, 149 (2008)

    Article  Google Scholar 

  24. Nieto de Castro C.A., Lourenço M.J.V., Ribeiro A.P.C., Vieira S.I.C., Goodrich P., Hardacre C.: J. Chem. Eng. Data 55, 653 (2010)

    Article  Google Scholar 

  25. Gardas R.L., Ge R., Goodrich P., Hardacre C., Hussain A., Rooney D.W.: J. Chem. Eng. Data 55, 1505 (2010)

    Article  Google Scholar 

  26. Maier F., Gottfried J.M., Rossa J., Gerhard D., Schulz P.S., Schwieger W., Wasserscheid P., Steinrück H.-P.: Angew. Chem. Int. Ed. 45, 7778 (2006)

    Article  Google Scholar 

  27. Himmler S., Hörmann S., van Hal R., Schulz P.S., Wasserscheid P.: Green Chem. 8, 887 (2006)

    Article  Google Scholar 

  28. Hasse B., Lehmann J., Assenbaum D., Wasserscheid P., Leipertz A., Fröba A.P.: J. Chem. Eng. Data 54, 2576 (2009)

    Article  Google Scholar 

  29. J.H. Davis, C.M. Gordon Jr., C. Hilgers, P. Wasserscheid, in Ionic Liquids in Synthesis, ed. by P. Wasserscheid, T. Welton (Wiley-VCH, Weinheim, 2006), p. 7

  30. Naziev Ya.M., Bashirov M.M., Abdulagatov I.M.: Fluid Phase Equilib. 226, 221 (2004)

    Article  Google Scholar 

  31. Braun R., Fischer S., Schaber A.: Wärme Stoffübertrag. 17, 121 (1983)

    Article  ADS  Google Scholar 

  32. Kohler M.: Z. Angew. Phys. 18, 356 (1965)

    Google Scholar 

  33. Poltz H.: Int. J. Heat Mass Transf. 8, 515 (1965)

    Article  MATH  Google Scholar 

  34. Fröba A.P., Kremer H., Leipertz A.: J. Phys. Chem. B 112, 12420 (2008)

    Article  Google Scholar 

  35. Ramires M.L.V., Nieto de Castro C.A., Perkins R.A., Nagasaka Y., Nagashima A., Assael M.J., Wakeham W.A.: J. Phys. Chem. Ref. Data 29, 133 (2000)

    Article  ADS  Google Scholar 

  36. A.P. Fröba, M.H. Rausch, K. Krzeminski, A. Leipertz, Int. J. Heat Mass Transfer (to be submitted) (2011)

  37. Rowley R.L., Yi S.-C., Gubier D.V., Stoker J.M.: J. Chem. Eng. Data 33, 362 (1988)

    Article  Google Scholar 

  38. Nieto de Castro C.A., Calado J.C.G., Wakeham W.A., Dix M.: J. Phys. E 9, 1073 (1976)

    Article  ADS  Google Scholar 

  39. Watanabe H., Kato H.: J. Chem. Eng. Data 49, 809 (2004)

    Article  Google Scholar 

  40. Assael M.J., Charitidou E., Nieto de Castro C.A.: Int. J. Thermophys. 9, 813 (1988)

    Article  Google Scholar 

  41. Widegren J.A., Magee J.W.: J. Chem. Eng. Data 52, 2331 (2007)

    Article  Google Scholar 

  42. Yoshida Y., Muroi K., Otsuka A., Saito G., Takahashi M., Yoko T.: Inorg. Chem. 43, 1458 (2004)

    Article  Google Scholar 

  43. Marsh K.N., Brennecke J.F., Chirico R.D., Frenkel M., Heintz A., Magee J.W., Peters C.J., Rebelo L.P.N., Seddon K.R.: Pure Appl. Chem. 81, 781 (2009)

    Article  Google Scholar 

  44. Chirico R.D., Diky V., Magee J.W., Frenkel M., Marsh K.N.: Pure Appl. Chem. 81, 791 (2009)

    Article  Google Scholar 

  45. Jacquemin J., Ge R., Nancarrow P., Rooney D.W., Costa Gomes M.F., Pádua A.A.H., Hardacre C.: J. Chem. Eng. Data 53, 716 (2008)

    Article  Google Scholar 

  46. Tariq M., Forte P.A.S., Costa Gomes M.F., Canongia Lopes J.N., Rebelo L.P.N.: J. Chem. Thermodyn. 41, 790 (2009)

    Article  Google Scholar 

  47. Ahosseini A., Sensenich B., Weatherley L.R., Scurto A.M.: J. Chem. Eng. Data 55, 1611 (2010)

    Article  Google Scholar 

  48. Harris K.R., Kanakubo M., Woolf L.A.: J. Chem. Eng. Data 52, 1080 (2007)

    Article  Google Scholar 

  49. Esperança J.M.S.S., Guedes H.J.R., Lopes J.N.Ganongia, Rebelo L.P.N.: J. Chem. Eng. Data 53, 867 (2008)

    Article  Google Scholar 

  50. Gardas R.L., Freire M.G., Carvalho P.J., Marrucho I.M., Fonseca I.M.A., Ferreira A.G.M., Coutinho J.A.P.: J. Chem. Eng. Data 52, 1881 (2007)

    Article  Google Scholar 

  51. Tome L.I.N., Carvalho P.J., Freire M.G., Marrucho I.M., Fonseca I.M.A., Ferreira A.G.M., Coutinho J.A.P., Gardas R.L.: J. Chem. Eng. Data 53, 1914 (2008)

    Article  Google Scholar 

  52. Gardas R.L., Costa H.F., Freire M.G., Carvalho P.J., Marrucho I.M., Fonseca I.M.A., Ferreira A.G.M., Coutinho J.A.P.: J. Chem. Eng. Data 53, 805 (2008)

    Article  Google Scholar 

  53. Esperança J.M.S.S., Guedes H.J.R., Blesic M., Rebelo L.P.N.: J. Chem. Eng. Data 51, 237 (2006)

    Article  Google Scholar 

  54. Gardas R.L., Freire M.G., Carvalho P.J., Marrucho I.M., Fonseca I.M.A., Ferreira A.G.M., Coutinho J.A.P.: J. Chem. Eng. Data 52, 80 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Fröba.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (XLS 1,450 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fröba, A.P., Rausch, M.H., Krzeminski, K. et al. Thermal Conductivity of Ionic Liquids: Measurement and Prediction. Int J Thermophys 31, 2059–2077 (2010). https://doi.org/10.1007/s10765-010-0889-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-010-0889-3

Keywords

Navigation