Skip to main content

Advertisement

Log in

A Humidity Generator for Temperatures up to 200 °C and Pressures up to 1.6 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A new humidity generator that produces gas streams of known moisture content at temperatures from 85 °C to 200 °C, absolute pressures from 0.2 MPa to 1.6 MPa, and relative humidities from 10 % to 90 % has been developed. The generator produces a moist gas stream by injecting fixed-rate streams of dry gas and liquid water into a vaporizer, where the water evaporates into the gas. The gas stream passes into a re-entrant radio-frequency (RF) cavity, which serves as our reference hygrometer, and then a test chamber. The present standard uncertainty of the RF hygrometer is 0.6 %, limited by the uncertainty of literature values for the polarizability of water. Dry nitrogen gas purging the pressure transducer line also combines with the moist gas stream downstream of the test chamber and flows through one of a set of capillaries. Modulation of gas flow through the fixed flow impedance of the capillary gives a simple method for controlling pressure. Individual insulated, temperature-controlled aluminum ovens enclose each major component. A larger oven encloses these ovens and their connecting tubing. To minimize corrosion, critical components are constructed of high-nickel alloys. The small total volume (<1 L) and small flow rate (<0.5 L·min−1) reduce operational hazards from steam scalding or from gas explosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A n :

Molar polarizability of nitrogen, cm3 · mol−1

A w, B w :

Debye constants describing the molar polarizability of water, A w + B w/T, cm3 · mol−1

B nn :

Nitrogen second virial coefficient, cm3 · mol−1

B ww :

Water second virial coefficient, cm3 · mol−1

B nw :

Nitrogen–water second virial coefficient, cm3 · mol−1

B mix :

Second virial coefficient of the gas mixture, cm3 · mol−1

\({\varepsilon ={\varepsilon}^{\prime}-{i}{\varepsilon}^{\prime\prime}}\) :

Dielectric constant

f :

Resonance frequency of the RF resonator hygrometer, Hz

L :

Length of capillary, m

P :

Pressure, Pa

P 1 :

Pressure at the capillary entrance, Pa

P 0 :

Pressure at the capillary exit, Pa

Q m :

Mass flow rate, kg · s−1

r :

Inner radius of capillary tube, m

R :

Gas constant, J · mol−1 · K−1

s :

Quantity \({{({{\varepsilon}^{\prime}-1})}/{( {{\varepsilon }^{\prime}+2})}}\)

T :

Temperature, K

T c :

Temperature of capillary, K

x w :

Mole fraction of water

η :

Viscosity, Pa · s

References

  1. Mawardi A., Yang F., Pitchumani R.: J. Fuel Cell Sci. Technol. 2, 121 (2005)

    Article  Google Scholar 

  2. Wagner W., Pruss A.: J. Phys. Chem. Ref. Data 31, 387 (2002)

    Article  ADS  Google Scholar 

  3. P.H. Huang, D.C. Ripple, M.R. Moldover, G.E. Scace, A Reference Standard for Measuring Humidity of Air Using a Re-entrant Radio Frequency Resonator, in Proceeedings 5th International Symposium on Humidity and Moisture (ISHM, Rio de Janeiro, 2006)

  4. Cheremisinoff N.P.: Fluid Flow: Pumps, Pipes and Channels. Ann Arbor Science, Ann Arbor (1981)

    Google Scholar 

  5. Tritton D.J.: Physical Fluid Dynamics, 2nd edn. Oxford University Press, Oxford (1988)

    Google Scholar 

  6. Buckingham A.D., Raab R.E.: Trans. Faraday Soc. 54, 623 (1958)

    Article  Google Scholar 

  7. Harvey A.H., Lemmon E.W.: Int. J. Thermophys. 26, 31 (2005)

    Article  ADS  Google Scholar 

  8. Moldover M.R., Buckley T.J.: Int. J. Thermophys. 22, 859 (2001)

    Article  Google Scholar 

  9. Birnbaum G., Chatterjee S.K.: J. Appl. Phys. 23, 220 (1952)

    Article  ADS  Google Scholar 

  10. Dymond J.H., Smith E.B.: The Virial Coefficients of Pure Gases and Mixtures, A Critical Compilation. Oxford University Press, Oxford (1980)

    Google Scholar 

  11. Harvey A.H., Lemmon E.W.: J. Phys. Chem. Ref. Data 33, 369 (2004)

    Article  ADS  Google Scholar 

  12. P.E. Huang, A.H. Harvey, NIST, private communication

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Ripple.

Additional information

Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vega-Maza, D., Miller, W.W., Ripple, D.C. et al. A Humidity Generator for Temperatures up to 200 °C and Pressures up to 1.6 MPa. Int J Thermophys 33, 1477–1487 (2012). https://doi.org/10.1007/s10765-010-0838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-010-0838-1

Keywords

Navigation