Skip to main content

Advertisement

Log in

Densities and Excess, Apparent, and Partial Molar Volumes of Binary Mixtures of BMIMBF4 + Ethanol as a Function of Temperature, Pressure, and Concentration

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The densities of five BMIMBF4 (1-butyl-3-methylimidazolium tetrafluoroborate) + ethanol binary mixtures with compositions of (0.0701, 0.3147, 0.5384, 0.7452, and 0.9152) mole fraction BMIMBF4 and of pure BMIMBF4 have been measured with a vibrating-tube densimeter. Measurements were performed at temperatures from 298 K to 398 K and at pressures up to 40 MPa. The total uncertainty of density, temperature, pressure, and concentration measurements were estimated to be less than 0.1 kg · m−3, 15 mK, 5 kPa, and 10−4, respectively. The uncertainties reported in this article are expanded uncertainties at the 95% confidence level with a coverage factor of k = 2. The measured densities were used to study derived volumetric properties such as excess, apparent, and partial molar volumes. It is shown that the values of excess molar volume for BMIMBF4 + ethanol mixtures are negative at all measured temperatures and pressures over the whole concentration range. The effect of water content on the measured values of density is discussed. The volumetric (excess, apparent, and partial molar volumes) and structural (direct and total correlation integrals, cluster size) properties of dilute BMIMBF4 + ethanol mixtures were studied in terms of the Krichevskii parameter. The measured densities were used to develop a Tait-type equation of state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crosthwaite J.M., Aki S.N.V.K., Maginn E.J., Brennecke J.F. (2004). J. Phys. Chem. B 108: 5113

    Article  Google Scholar 

  2. Crosthwaite J.M., Muldoon M.J., Aki S.N.V.K., Maginn E.J., Brennecke J.F. (2006). J. Phys. Chem. B 110: 9354

    Article  Google Scholar 

  3. Jacquemin J., Husson P., Padua A.A.H., Majer V. (2006). Green Chem. 8, 172

    Article  Google Scholar 

  4. Seddon K.R., Stark A., Torres M.-J. (2000). Pure Appl. Chem. 72: 2275

    Article  Google Scholar 

  5. Annat G., MacFarlane D.R., Forsyth M. (2007). J. Phys. Chem. B 111: 9018

    Article  Google Scholar 

  6. Tomida D., Kumagai A., Qiao K., Yokoyama C. (2006). Int. J. Thermophys. 27, 39

    Article  Google Scholar 

  7. Zhang Q.-G., Xue F., Tong J., Guan W., Wang B. (2006). J. Solution Chem. 35, 297

    Article  Google Scholar 

  8. Yang J.-Z., Gui J.-S., Lu X.-M., Zhang Q.-G., Li H.-W. (2005). Acta Chim. Sinica 63, 577

    Google Scholar 

  9. Tekin A., Safarov J., Shahverdiyev A., Hassel E. (2007). J. Mol. Liquids 136, 177

    Article  Google Scholar 

  10. Huddleston J.G., Visser A.E., Reichert W.M., Willauer H.D., Broker G.A., Rogers R.D. (2001). Green Chem. 3, 156

    Article  Google Scholar 

  11. Wang J., Tian Y., Zhao Y., Zhuo K. (2003). Green Chem. 5, 618

    Article  Google Scholar 

  12. Fredlake C.P., Crosthwaite J.M., Hert D.G., Aki S.N.V.K., Brennecke J.F. (2004). J. Chem. Eng. Data 49, 965

    Article  Google Scholar 

  13. Tokuda H., Hayamizu K., Ishii K., Susan M.A.B.H., Watanabe M. (2004). J. Phys. Chem. B 108: 16593

    Article  Google Scholar 

  14. de Azevedo R.G., Esperanca J.M.S.S., Najdanovic-Visak V., Visak Z.P., Guedes H.J.R., da Ponte M.N., Rebelo L.P.N.J. (2005). J. Chem. Eng. Data 50, 997

    Article  Google Scholar 

  15. Zhou Q., Wang L.-S., Chen H.-P.J. (2006). J. Chem. Eng. Data 51, 905

    Article  Google Scholar 

  16. Gardas R.L., Freire M.G., Carvalho P.J., Marrucho I.M., Fonseca I.M.A., Ferreira A.G.M., Coutinho J.A.P.J. (2007). J. Chem. Eng. Data 52, 80

    Article  Google Scholar 

  17. Suarez P.A.Z., Einloft S., Dullius J.E.L., de Souza R.F., Dupont J. (1998). J. Chim. Phys.-Chim. Biol. 95: 1626

    Article  ADS  Google Scholar 

  18. Hagiwara R., Ito Y. (2000). J. Fluorine Chem. 105, 221

    Article  Google Scholar 

  19. Branco L.C., Rosa J.N., Ramos J.J.M., Afonso C.A.M. (2002). Chem.-Eur. J. 8: 3671

    Article  Google Scholar 

  20. Kim S.K., Shin B.K., Huen L. (2004). Korean. J. Chem. Eng. 21: 1010

    Article  Google Scholar 

  21. K. Seddon, A. Stark, M.-J. Torres, ACS Symp. Series, Chap. 4 (2002), p. 34

  22. Rebelo L.P.N., Najdanovic-Visak V., Visak Z.P., Nunes da Ponte M., Szydlowski J., Cerdeirina C.A., Troncoso J., Romani L., Esperanca J.M.S.S., Guedes H.J.R., deSousa H.C. (2004). Green Chem. 6, 369

    Article  Google Scholar 

  23. Zafarani-Moattar M.T., Shekaari H.J. (2006). J. Chem. Thermodyn. 38: 1377

    Article  Google Scholar 

  24. Nishida T., Tashiro Y., Yamamoto M. (2003). J. Fluorine Chem. 120, 135

    Article  Google Scholar 

  25. Sanmamed Y.A., Gonzalez-Salagado D., Troncoso J., Cerdeirina C.A., Romani L. (2007). Fluid Phase Equilib. 252, 96

    Article  Google Scholar 

  26. Aki S.N.V.K., Mellein B.R., Saurer E.M., Brennecke J.F. (2004). J. Phys. Chem. B 108: 20355

    Article  Google Scholar 

  27. Lopes J.N.C., Cordeiro T.C., Esperanca J.M.S.S., Guedes H.J.R., Huq S., Rebelo L.P.N., Seddon K.R. (2005). J. Phys. Chem. 109: 3519

    Google Scholar 

  28. Wagner W., Pruß A. (2002). J. Phys. Chem. Ref. Data 31, 387

    Article  ADS  Google Scholar 

  29. de Reuck K.M., Craven R.J.B. (1993). Methanol International Thermodynamic Tables of the Fluid State-12. Blackwell Scientific, Oxford

    Google Scholar 

  30. I.M. Abdulagatov, A. Tekin, J. Safarov, A. Shahverdiyev, E. Hassel, J. Sol. Chem. (in press)

  31. Ihmels E.C., Gmehling J. (2001). Ind. Eng. Chem. Res. 40: 4470

    Article  Google Scholar 

  32. Assael M.J., Dymond J.H., Exadaktilou D. (1994). Int. J. Thermophys. 15, 155

    Article  Google Scholar 

  33. Dymond J.H., Malhotra R. (1987). Int. J. Thermophys. 8, 541

    Article  Google Scholar 

  34. Dymond J.H., Malhotra R. (1988). Int. J. Thermophys. 8, 941

    Article  Google Scholar 

  35. Kumagai A., Date K., Iwasaki H. (1976). J. Chem. Eng. Data 21, 226

    Article  Google Scholar 

  36. J.A. Widegren, A. Laesecke, J.W. Magee, Chem. Comm. 1610 (2005)

  37. Marsh K.N., Boxall J.A., Lichtenthaler R. (2004). Fluid Phase Equilib. 219, 93

    Article  Google Scholar 

  38. Van Valkenburg M.E., Vaughn R.L., Williams M., Wilkes J.S. (2005). Thermochim. Acta 425, 181

    Article  Google Scholar 

  39. Dominguez-Vidal A., Kaun N., Ayora-Canada M.J., Lendl B. (2007). J. Phys. Chem. B 111: 4446

    Article  Google Scholar 

  40. M.L. Japas, J.L. Alvarez, J. Kukuljan, K. Gutkowski, R. Fernández-Prini, in Steam, Water, and Hydrothermal Systems: Proc. 13th Int. Conf. Prop. Water and Steam, ed. by P.R. Tremaine, Ph.G. Hill, D.E. Irish, P.V. Balakrishnan (NRC Research Press, Ottawa, 2000), pp. 165–174

  41. Dillon H.E., Penoncello S.G. (2004). Int. J. Thermophys. 25, 321

    Article  Google Scholar 

  42. Abdulagatov I.M., Azizov N.D. (2007). J. Therm. Anal. Calorim. 87, 483

    Article  Google Scholar 

  43. Abdulagatov I.M., Azizov N.D. (2006). J. Chem. Thermodyn. 38: 1402

    Article  Google Scholar 

  44. Abdulagatov I.M., Azizov N.D. (2003). Int. J. Thermophys. 24: 1581

    Article  Google Scholar 

  45. Redlich O., Mayer D.M. (1964). Chem. Rev. 64, 221

    Article  Google Scholar 

  46. Roux A., Musbally G.M., Perron G., Desnoyers J.E. (1978). Can. J. Chem. 56, 24

    Article  Google Scholar 

  47. Hiejima Y., Yao M. (2003). J. Chem. Phys. 119: 7931

    Article  ADS  Google Scholar 

  48. Levelt Sengers J.M.H., Morrison G., Nielson G., Chang R.F., Everhart C.M. (1986). Int. J. Thermophys. 7, 231

    Article  Google Scholar 

  49. Levelt Sengers J.M.H. (1991). J. Supercrit. Fluids 4, 215

    Article  Google Scholar 

  50. Chang R.F., Levelt Sengers J.M.H. (1986). J. Phys. Chem. 90: 5921

    Article  Google Scholar 

  51. Chialvo A.A., Cummings P.T. (1994). AIChE J. 40: 1 558

    Article  Google Scholar 

  52. Debenedetti P.G., Mohamed R.S. (1989). J. Chem. Phys. 90: 4528

    Article  ADS  Google Scholar 

  53. J.M.H. Levelt Sengers, in Supercritical Fluids: Fundamentals for Applications, ed. by E. Kiran, J.M.H. Levelt Sengers (Kluwer, Dordrecht, 1994), pp. 3–38

  54. Fernández-Prini R., Japas M.L. (1994). Chem. Soc. Rev. 23, 155

    Article  Google Scholar 

  55. O’Connell J.P., Hu Y., Marshall K.A. (1999). Fluid Phase Equilib. 158, 583

    Article  Google Scholar 

  56. E.Z. Hamod, G.A. Manssori, in Fluctuation Theory of Mixtures, ed. by E. Matteoli, G.A. Manssori (Taylor and Francis, New York, 1990), pp. 95–130

  57. McGuigan D.B., Monson P.A. (1990). Fluid Phase Equilib. 57, 227

    Article  Google Scholar 

  58. Chialvo A.A., Cummings P.T. (1998). AIChE J. 44, 667

    Article  Google Scholar 

  59. O’Connell J.P. (1971). Mol. Phys. 20, 27

    Article  ADS  Google Scholar 

  60. P.T. Cummings, A.A. Chialvo, Chem. Eng. Sci. 49, 2735 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Abdulagatov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdulagatov, I.M., Tekin, A., Safarov, J. et al. Densities and Excess, Apparent, and Partial Molar Volumes of Binary Mixtures of BMIMBF4 + Ethanol as a Function of Temperature, Pressure, and Concentration. Int J Thermophys 29, 505–533 (2008). https://doi.org/10.1007/s10765-008-0410-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-008-0410-4

Keywords

Navigation