Skip to main content

Advertisement

Log in

Fast Terahertz Spectroscopic Holographic Assessment of Optical Properties of Diabetic Blood Plasma

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

A Publisher Correction to this article was published on 22 September 2022

This article has been updated

Abstract

A new method for diagnosis of diabetes mellitus is proposed, which uses for measurement a lyophilized blood plasma sample prepared in the form of a pellet. The paper develops a methodology for fast spectroscopic measurements of such pellets with terahertz pulse time-domain holography. For that reason, blood plasma pellets were experimentally measured by terahertz time-domain spectroscopy system in transmission mode and its characteristics were obtained to be then used in numerical simulation of pulse terahertz hologram formation and extraction of its optical properties. Thus, a demonstration of the proof-of-concept was given for the techniques of pellet inspection, which contains information about the presence of glycated proteins, reflecting a diabetic pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. M. R. Grootendorst, A. J. Fitzgerald, S. G. B. De Koning, A. Santaolalla, A. Portieri, M. Van Hemelrijck, M. R. Young, J. Owen, M. Cariati, M. Pepper et al., Use of a handheld terahertz pulsed imaging device to differentiate benign and malignant breast tissue, Biomed. Opt. Express 8, 2932–2945 (2017).

  2. J. Kindt and C. Schmuttenmaer, Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy, J. Phys. Chem. 100, 10373–10379 (1996).

  3. U. Møller, D. G. Cooke, K. Tanaka, and P. U. Jepsen, Terahertz reflection spectroscopy of Debye relaxation in polar liquids, J. Opt. Soc. Am. B 26, A113–A125 (2009).

  4. T. H. Duong and K. Zakrzewska, Calculation and analysis of low frequency normal modes for DNA, J. Comput. Chem. 18, 796–811 (1997).

  5. A. Markelz, A. Roitberg, and E. J. Heilweil, Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz, Chem. Phys. Lett. 320, 42–48 (2000).

  6. M. Hishida and K. Tanaka, Long-range hydration effect of lipid membrane studied by terahertz time-domain spectroscopy, Phys. Rev. Lett. 106, 158102 (2011).

  7. H.-B. Liu and X.-C. Zhang, Dehydration kinetics of D-glucose monohydrate studied using THz time-domain spectroscopy, Chem. Physics Lett. 429, 229–233 (2006).

  8. M. H. Arbab, D. P. Winebrenner, T. C. Dickey, A. Chen, M. B. Klein, and P. D. Mourad, Terahertz spectroscopy for the assessment of burn injuries in vivo, J. Biomed. Opt. 18, 077004 (2013).

  9. I. Echchgadda, J. A. Grundt, M. Tarango, B. L. Ibey, T. D. Tongue, M. Liang, H. Xin, and G. J. Wilmink, Using a portable terahertz spectrometer to measure the optical properties of in vivo human skin, J. Biomed. Opt. 18, 120503 (2013).

  10. D. B. Bennett, Z. D. Taylor, P. Tewari, R. S. Singh, M. O. Culjat, W. S. Grundfest, D. J. Sassoon, R. D. Johnson, J.-P. Hubschman, and E. Brown, Terahertz sensing in corneal tissues, J. Biomed. Opt. 16, 057003 (2011).

  11. D. B. Bennett, Z. D. Taylor, P. Tewari, S. Sung, A. Maccabi, R. S. Singh, M. O. Culjat, W. S. Grundfest, J.-P. Hubschman, and E. R. Brown, Assessment of corneal hydration sensing in the terahertz band: in vivo results at 100 GHz, J. Biomed. Opt. 17, 097008 (2012).

  12. N. Hoshi, Y. Nikawa, K. Kawai, and S. Ebisu, Application of microwaves and millimeter waves for the characterization of teeth for dental diagnosis and treatment, IEEE T. Microw. Theory. 46, 834–838 (1998).

  13. C. B. Reid, A. Fitzgerald, G. Reese, R. Goldin, P. Tekkis, P. O’Kelly, E. Pickwell-MacPherson, A. P. Gibson, and V. P. Wallace, Terahertz pulsed imaging of freshly excised human colonic tissues, Phys. Med. Biol. 56, 4333 (2011).

  14. C. B. Reid, G. Reese, A. P. Gibson, and V. P. Wallace, Terahertz time-domain spectroscopy of human blood, IEEE J. Biomed. Health 17, 774–778 (2013).

  15. Q. Cassar, A. Al-Ibadi, L. Mavarani, P. Hillger, J. Grzyb, G. MacGrogan, T. Zimmer, U. R. Pfeiffer, J.-P. Guillet, and P. Mounaix, Pilot study of freshly excised breast tissue response in the 300–600 GHz range, Biomed. Opt. Express 9, 2930–2942 (2018).

  16. U. R. Pfeiffer, P. Hillger, R. Jain, J. Grzyb, T. Bucher, Q. Cassar, G. MacGrogan, J.-P. Guillet, P. Mounaix, and T. Zimmer, Ex Vivo Breast Tumor Identification: Advances Toward a Silicon-Based Terahertz Near-Field Imaging Sensor, IEEE Microw. Mag. 20, 32–46 (2019).

  17. O. Cherkasova, M. Nazarov, and A. Shkurinov, Noninvasive blood glucose monitoring in the terahertz frequency range, Opt. Quant. Electron. 48, 217 (2016).

  18. O. Smolyanskaya, E. Lazareva, S. Nalegaev, N. Petrov, K. Zaytsev, P. Timoshina, D. Tuchina, Y. G. Toropova, O. Kornyushin, A. Y. Babenko et al., Multimodal Optical Diagnostics of Glycated Biological Tissues, Biochemistry (Moscow) 84, 124–143 (2019).

  19. O. Smolyanskaya, N. Chernomyrdin, A. Konovko, K. Zaytsev, I. Ozheredov, O. Cherkasova, M. Nazarov, J.-P. Guillet, S. Kozlov, Y. V. Kistenev et al., Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids, Prog. Quant. Electron. (2018).

  20. O. Cherkasova, M. Nazarov, A. Angeluts, and A. Shkurinov, Analysis of blood plasma at terahertz frequencies, Opt. Spectrosc. 120, 50–57 (2016).

  21. W. H. Organization et al., Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consultation, (World Health Organization, 2006).

  22. K. J. Welsh, M. S. Kirkman, and D. B. Sacks, Role of glycated proteins in the diagnosis and management of diabetes: research gaps and future directions, Diabetes Care 39, 1299–1306 (2016).

  23. J. Anguizola, R. Matsuda, O. S. Barnaby, K. Hoy, C. Wa, E. DeBolt, M. Koke, and D. S. Hage, Glycation of human serum albumin, Clin. Chim. Acta 425, 64–76 (2013).

  24. O. Smolyanskaya, I. Schelkanova, M. Kulya, E. Odlyanitskiy, I. Goryachev, A. Tcypkin, Y. V. Grachev, Y. G. Toropova, and V. Tuchin, Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods, Biomed. Opt. Express 9, 1198–1215 (2018).

  25. S. Sakhnov, E. Leksutkina, O. Smolyanskaya, A. Usov, S. Parakhuda, Y. V. Grachev, and S. Kozlov, Application of femtotechnologies and terahertz spectroscopy methods in cataract diagnostics, Opt. Spectrosc. 111, 257 (2011).

  26. O. A. Smolyanskaya, O. V. Kravtsenyuk, A. V. Panchenko, E. L. Odlyanitskiy, J. Guillet, O. P. Cherkasova, and M. Khodzitsky, Study of blood plasma optical properties in mice grafted with Ehrlich carcinoma in the frequency range 0.1–1.0 THz, Quantum Electron. 47, 1031 (2017).

  27. O. A. Smolyanskaya, V. N. Trukhin, P. G. Gavrilova, E. L. Odlyanitskiy, A. V. Semenova, Q. Cassar, J.-P. Guillet, P. Mounaix, K. G. Gareev, and D. V. Korolev, Terahertz spectra of drug-laden magnetic nanoparticles, Proc. SPIE 10892, 108920L (2019).

  28. N. V. Petrov, M. S. Kulya, A. N. Tsypkin, V. G. Bespalov, and A. Gorodetsky, Application of terahertz pulse time-domain holography for phase imaging, IEEE T. THz. Sci. Techn. 6, 464–472 (2016).

  29. M. Kulya, N. V. Petrov, A. Tsypkin, K. Egiazarian, and V. Katkovnik, Hyperspectral data denoising for terahertz pulse time-domain holography, Opt. Express 27, 18456–18476 (2019).

  30. N. S. Balbekin, Q. Cassar, O. A. Smolyanskaya, M. S. Kulya, N. V. Petrov, G. MacGrogan, J.-P. Guillet, P. Mounaix, and V. V. Tuchin, Terahertz pulse time-domain holography method for phase imaging of breast tissue, Proc. SPIE 10887, 108870G (2019).

  31. N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography, Sci. Rep. 9, 180 (2019).

  32. M. S. Kulya, N. S. Balbekin, A. A. Gorodetsky, S. A. Kozlov, and N. V. Petrov, Vectorial terahertz pulse time-domain holography for broadband optical wavefront sensing, Proc. SPIE 11279, 112790D (2020).

  33. M. Kulya, N. V. Petrov, V. Katkovnik, and K. Egiazarian, Terahertz pulse time-domain holography with balance detection: complex-domain sparse imaging, Appl. Optics 58, G61–G70 (2019).

  34. R. Sepetiene, R. Sidlauskiene, and V. Patamsyte, Plasma for Laboratory Diagnostics, in Plasma Medicine-Concepts and Clinical Applications, (IntechOpen, 2018).

  35. K. Ahi, N. Jessurun, M.-P. Hosseini, and N. Asadizanjani, Survey of terahertz photonics and biophotonics, Optical Engineering 59, 061629 (2020).

  36. C. Rønne, P.-O. Åstrand, and S. R. Keiding, THz spectroscopy of liquid H2O and D2O, Phys. Rev. Lett. 82, 2888 (1999).

  37. A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, Terahertz spectroscopy of explosives and drugs, Mater. Today 11, 18–26 (2008).

  38. M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).

  39. Z. Jiang and X.-C. Zhang, 2D measurement and spatio-temporal coupling of few-cycle THz pulses, Optics Express 5, 243–248 (1999).

  40. Q. Wu, T. Hewitt, and X.-C. Zhang, Two-dimensional electro-optic imaging of thz beams, Applied Physics Letters 69, 1026–1028 (1996).

  41. Z. Lu, P. Campbell, and X.-C. Zhang, Free-space electro-optic sampling with a high-repetition-rate regenerative amplified laser, Applied Physics Letters 71, 593–595 (1997).

  42. A. Koulouklidis, V. Y. Fedorov, and S. Tzortzakis, Spectral bandwidth scaling laws and reconstruction of THz wave packets generated from two-color laser plasma filaments, Phys. Rev. A 93, 033844 (2016).

  43. Y. A. Kapoyko, A. A. Drozdov, S. A. Kozlov, and X.-C. Zhang, Evolution of few-cycle pulses in nonlinear dispersive media: Velocity of the center of mass and root-mean-square duration, Phys. Rev. A 94, 033803 (2016).

  44. A. Ezerskaya, D. Ivanov, V. Bespalov, and S. Kozlov, Diffraction of single-period terahertz electromagnetic waves, J. Opt. Technol. 78, 551–557 (2011).

  45. A. A. Ezerskaya, D. V. Ivanov, S. A. Kozlov, and Y. S. Kivshar, Spectral approach in the analysis of pulsed terahertz radiation, J. Infrared Millim. Te. 33, 926–942 (2012).

  46. M. Kulya, N. Petrov, A. Tcypkin, and V. Bespalov, Influence of raster scan parameters on the image quality for the thz phase imaging in collimated beam with a wide aperture, J. Phys. Conf. Ser. 536, 012010 (2014).

  47. M. Kulya, N. Balbekin, I. Gredyuhina, M. Uspenskaya, A. Nechiporenko, and N. Petrov, Computational terahertz imaging with dispersive objects, J. Mod. Optic. 64, 1283–1288 (2017).

  48. A. Novikova, D. Markl, J. A. Zeitler, T. Rades, and C. S. Leopold, A non-destructive method for quality control of the pellet distribution within a MUPS tablet by terahertz pulsed imaging, Eur. J. Pharm. Sci. 111, 549–555 (2018).

Download references

Funding

The reported study was funded by RFBR-CNRS according to the research project 18-51-16002 and RFBR 17-00-00275 (17-00-00272), and by the Government of the Russian Federation (Grant 08-08). N.S.B. received support from the Russian Ministry of Education and Science (project within the state mission for institutions of higher education, agreement 3.1893.2017/4.6). M.S.K. received support RFBR project 18-32-20215/18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga A. Smolyanskaya.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulya, M.S., Odlyanitskiy, E.L., Cassar, Q. et al. Fast Terahertz Spectroscopic Holographic Assessment of Optical Properties of Diabetic Blood Plasma. J Infrared Milli Terahz Waves 41, 1041–1056 (2020). https://doi.org/10.1007/s10762-020-00728-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00728-9

Keywords

Navigation