Skip to main content

Advertisement

Log in

Dehydration Accelerates Cytogenesis and Cyst Growth in Pkd1−/− Mice by Regulating Macrophage M2 Polarization

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Adult autosomal dominant polycystic kidney disease (ADPKD) has been shown to be related as a “third hit” to the occurrence of acute or chronic kidney injury. Here, we examined whether dehydration, as a common kidney risk factor, could cause cystogenesis in chronic-onset Pkd1−/− mice by regulating macrophage activation. First, we confirmed that dehydration accelerated cytogenesis in Pkd1−/− mice and that macrophages infiltrated the kidney tissues even earlier than macroscopic cyst formation. Then, microarray analysis suggested that glycolysis pathway may be involved in macrophage activation in Pkd1−/− kidneys under conditions of dehydration. Further, we confirmed glycolysis pathway was activated and lactic acid (L-LA) was overproduced in the Pkd1−/− kidney under conditions of dehydration. We have already proved that L-LA strongly stimulated M2 macrophage polarization and overproduction of polyamine in macrophage in vitro, and in the present study, we further discovered that M2 polarization-induced polyamine production shortened the primary cilia length by disrupting the PC1/PC2 complex. Finally, the activation of L-LA–arginase 1–polyamine pathway contributed to cystogenesis and progressive cyst growth in Pkd1−/− mice recurrently exposed to dehydration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

Microarray data have been deposited in the Array Express database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under the accession number E-MTAB-10449.

References

  1. Ong, A.C., O. Devuyst, B. Knebelmann, and G. Walz. 2015. Autosomal dominant polycystic kidney disease: The changing face of clinical management. Lancet 385 (9981): 1993–2002. https://doi.org/10.1016/s0140-6736(15)60907-2.

    Article  PubMed  Google Scholar 

  2. Spithoven, E.M., A. Kramer, E. Meijer, B. Orskov, C. Wanner, J.M. Abad, N. Aresté, R.A. de la Torre, F. Caskey, C. Couchoud, et al. 2014. Renal replacement therapy for autosomal dominant polycystic kidney disease (ADPKD) in Europe: prevalence and survival—an analysis of data from the ERA-EDTA Registry. Nephrology Dialysis Transplantation 29: Suppl 4 iv15–25. https://doi.org/10.1093/ndt/gfu017

  3. Torres, V.E., A.B. Chapman, O. Devuyst, R.T. Gansevoort, J.J. Grantham, E. Higashihara, R.D. Perrone, H.B. Krasa, J. Ouyang, and F.S. Czerwiec. 2012. Tolvaptan in patients with autosomal dominant polycystic kidney disease. New England Journal of Medicine 367 (25): 2407–2418. https://doi.org/10.1056/NEJMoa1205511.

    Article  CAS  PubMed  Google Scholar 

  4. Blair, H.A., and G.M. Keating. 2015. Tolvaptan: A review in autosomal dominant polycystic kidney disease. Drugs 75 (15): 1797–1806. https://doi.org/10.1007/s40265-015-0475-x.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, A., T. Hirose, Y. Ohsaki, C. Takahashi, E. Sato, I. Oba-Yabana, S. Kinugasa, Y. Muroya, S. Ito, and T. Mori. 2019. Hydrochlorothiazide ameliorates polyuria caused by tolvaptan treatment of polycystic kidney disease in PCK rats. Clinical and Experimental Nephrology 23 (4): 455–464. https://doi.org/10.1007/s10157-018-1669-9.

    Article  CAS  PubMed  Google Scholar 

  6. Khan, M.Y., M.S. Rawala, M. Siddiqui, W. Abid, and A. Aslam. 2019. Tolvaptan-induced liver injury: who is at risk? A case report and literature review. Cureus 11 (6): e4842. https://doi.org/10.7759/cureus.4842

  7. Li, X., B.S. Magenheimer, S. Xia, T. Johnson, D.P. Wallace, J.P. Calvet, and R. Li. 2008. A tumor necrosis factor-alpha-mediated pathway promoting autosomal dominant polycystic kidney disease. Nature Medicine 14 (8): 863–868. https://doi.org/10.1038/nm1783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Swenson-Fields, K.I., C.J. Vivian, S.M. Salah, J.D. Peda, B.M. Davis, N. van Rooijen, D.P. Wallace, and T.A. Fields. 2013. Macrophages promote polycystic kidney disease progression. Kidney International 83 (5): 855–864. https://doi.org/10.1038/ki.2012.446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, L., X. Zhou, L.X. Fan, Y. Yao, K.I. Swenson-Fields, M. Gadjeva, D.P. Wallace, D.J. Peters, A. Yu, J.J. Grantham, et al. 2015. Macrophage migration inhibitory factor promotes cyst growth in polycystic kidney disease. The Journal of Clinical Investigation. https://doi.org/10.1172/jci80467.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yang, Y., M. Chen, J. Zhou, J. Lv, S. Song, L. Fu, J. Chen, M. Yang, and C. Mei. 2018. Interactions between macrophages and cyst-lining epithelial cells promote kidney cyst growth in Pkd1-deficient mice. Journal of the American Society of Nephrology 29 (9): 2310–2325. https://doi.org/10.1681/asn.2018010074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takakura, A., L. Contrino, X. Zhou, J.V. Bonventre, Y. Sun, B.D. Humphreys, and J. Zhou. 2009. Renal injury is a third hit promoting rapid development of adult polycystic kidney disease. Human Molecular Genetics 18 (14): 2523–2531. https://doi.org/10.1093/hmg/ddp147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Belliere, J., A. Casemayou, L. Ducasse, A. Zakaroff-Girard, F. Martins, J.S. Iacovoni, C. Guilbeau-Frugier, B. Buffin-Meyer, B. Pipy, D. Chauveau, et al. 2015. Specific macrophage subtypes influence the progression of rhabdomyolysis-induced kidney injury. Journal of the American Society of Nephrology 26 (6): 1363–1377. https://doi.org/10.1681/asn.2014040320.

    Article  CAS  PubMed  Google Scholar 

  13. García-Trabanino, R., E. Jarquín, C. Wesseling, R.J. Johnson, M. González-Quiroz, I. Weiss, J. Glaser, J. José Vindell, L. Stockfelt, C. Roncal, et al. 2015. Heat stress, dehydration, and kidney function in sugarcane cutters in El Salvador—a cross-shift study of workers at risk of Mesoamerican nephropathy. Environmental Research 142: 746–755. https://doi.org/10.1016/j.envres.2015.07.007.

    Article  CAS  PubMed  Google Scholar 

  14. Wesseling, C., A. Aragón, M. González, I. Weiss, J. Glaser, C.J. Rivard, C. Roncal-Jiménez, R. Correa-Rotter, and R.J. Johnson. 2016. Heat stress, hydration and uric acid: a cross-sectional study in workers of three occupations in a hotspot of Mesoamerican nephropathy in Nicaragua. BMJ Open 6 (12): e011034. https://doi.org/10.1136/bmjopen-2016-011034

  15. Correa-Rotter, R., and R. García-Trabanino. 2019. Mesoamerican nephropathy. Seminars in Nephrology 39 (3): 263–271. https://doi.org/10.1016/j.semnephrol.2019.02.004.

    Article  PubMed  Google Scholar 

  16. Roncal Jimenez, C.A., T. Ishimoto, M.A. Lanaspa, C.J. Rivard, T. Nakagawa, A.A. Ejaz, C. Cicerchi, S. Inaba, M. Le, M. Miyazaki, et al. 2014. Fructokinase activity mediates dehydration-induced renal injury. Kidney International 86 (2): 294–302. https://doi.org/10.1038/ki.2013.492.

    Article  CAS  PubMed  Google Scholar 

  17. Piontek, K., L.F. Menezes, M.A. Garcia-Gonzalez, D.L. Huso, and G.G. Germino. 2007. A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nature Medicine 13 (12): 1490–1495. https://doi.org/10.1038/nm1675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, M., M. Chen, Y. Jing, J. Gu, S. Mei, Q. Yao, J. Zhou, M. Yang, L. Sun, W. Wang, et al. 2016. The C-terminal tail of polycystin-1 regulates complement factor B expression by signal transducer and activator of transcription 1. American Journal of Physiology. Renal Physiology 310 (11): F1284-1294. https://doi.org/10.1152/ajprenal.00428.2015.

    Article  CAS  PubMed  Google Scholar 

  19. Raphael, K.L., K.A. Strait, P.K. Stricklett, R.L. Miller, R.D. Nelson, K.B. Piontek, G.G. Germino, and D.E. Kohan. 2009. Inactivation of Pkd1 in principal cells causes a more severe cystic kidney disease than in intercalated cells. Kidney International 75 (6): 626–633. https://doi.org/10.1038/ki.2008.659.

    Article  CAS  PubMed  Google Scholar 

  20. Buchholz, B., and K.U. Eckardt. 2020. Role of oxygen and the HIF-pathway in polycystic kidney disease. Cellular Signalling 69: 109524. https://doi.org/10.1016/j.cellsig.2020.109524

  21. Yang, Y., L. Ma, M. Song, X. Li, F. He, C. Wang, M. Chen, J. Zhou, and C. Mei. 2020. The role of the complement factor B-arginase-polyamine molecular axis in uremia-induced cardiac remodeling in mice. European Journal of Immunology 50 (2): 220–233. https://doi.org/10.1002/eji.201948227.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, Y., E.A. Daniel, J. Metcalf, Y. Dai, G.A. Reif, and D.P. Wallace. 2022. CaMK4 overexpression in polycystic kidney disease promotes mTOR-mediated cell proliferation. Journal of Molecular Cell Biology 14 (7). https://doi.org/10.1093/jmcb/mjac050

  23. Yuajit, C., C. Muanprasat, A.R. Gallagher, S.V. Fedeles, S. Kittayaruksakul, S. Homvisasevongsa, S. Somlo, and V. Chatsudthipong. 2014. Steviol retards renal cyst growth through reduction of CFTR expression and inhibition of epithelial cell proliferation in a mouse model of polycystic kidney disease. Biochemical Pharmacology 88 (3): 412–421. https://doi.org/10.1016/j.bcp.2014.01.038.

    Article  CAS  PubMed  Google Scholar 

  24. Hopp, K., C.J. Ward, C.J. Hommerding, S.H. Nasr, H.F. Tuan, V.G. Gainullin, S. Rossetti, V.E. Torres, and P.C. Harris. 2012. Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. The Journal of Clinical Investigation 122 (11): 4257–4273. https://doi.org/10.1172/jci64313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leonhard, W.N., H. Happe, and D.J. Peters. 2016. Variable cyst development in autosomal dominant polycystic kidney disease: The biologic context. Journal of the American Society of Nephrology 27 (12): 3530–3538. https://doi.org/10.1681/asn.2016040425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Happé H, Leonhard WN, van der Wal A, van de Water B, Lantinga-van Leeuwen IS, Breuning MH, de Heer E, Peters DJ. 2009. Toxic tubular injury in kidneys from Pkd1-deletion mice accelerates cystogenesis accompanied by dysregulated planar cell polarity and canonical Wnt signaling pathways. Human Molecular Genetics 18 (14): 2532–2542. https://doi.org/10.1093/hmg/ddp190.

    Article  CAS  PubMed  Google Scholar 

  27. Legué, E., and K.F. Liem Jr. 2019. Tulp3 is a ciliary trafficking gene that regulates polycystic kidney disease. Current Biology 29 (5): 803-812.e805. https://doi.org/10.1016/j.cub.2019.01.054.

    Article  CAS  PubMed  Google Scholar 

  28. Nowak, K.L., and K. Hopp. 2020. Metabolic reprogramming in autosomal dominant polycystic kidney disease: Evidence and therapeutic potential. Clinical Journal of the American Society of Nephrology 15 (4): 577–584. https://doi.org/10.2215/cjn.13291019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rowe, I., M. Chiaravalli, V. Mannella, V. Ulisse, G. Quilici, M. Pema, X.W. Song, H. Xu, S. Mari, F. Qian, et al. 2013. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nature Medicine 19 (4): 488–493. https://doi.org/10.1038/nm.3092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chiaravalli, M., I. Rowe, V. Mannella, G. Quilici, T. Canu, V. Bianchi, A. Gurgone, S. Antunes, P. D’Adamo, A. Esposito, et al. 2016. 2-Deoxy-d-glucose ameliorates PKD progression. Journal of the American Society of Nephrology 27 (7): 1958–1969. https://doi.org/10.1681/asn.2015030231.

    Article  CAS  PubMed  Google Scholar 

  31. Gray, L.R., S.C. Tompkins, and E.B. Taylor. 2014. Regulation of pyruvate metabolism and human disease. Cellular and Molecular Life Sciences 71 (14): 2577–2604. https://doi.org/10.1007/s00018-013-1539-2.

    Article  CAS  PubMed  Google Scholar 

  32. Hopp, K., E.K. Kleczko, B.Y. Gitomer, M. Chonchol, J. Klawitter, U. Christians, and J. Klawitter. 2022. Metabolic reprogramming in a slowly developing orthologous model of polycystic kidney disease. American Journal of Physiology. Renal Physiology 322 (3): F258-f267. https://doi.org/10.1152/ajprenal.00262.2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Trott, J.F., V.J. Hwang, T. Ishimaru, K.J. Chmiel, J.X. Zhou, K. Shim, B.J. Stewart, M.R. Mahjoub, K.Y. Jen, D.K. Barupal, et al. 2018. Arginine reprogramming in ADPKD results in arginine-dependent cystogenesis. American Journal of Physiology. Renal Physiology 315 (6): F1855-f1868. https://doi.org/10.1152/ajprenal.00025.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rojas-Martínez, C., R.I. Rodríguez-Vivas, J.V. Figueroa Millán, K.Y. Acosta Viana, E.J. Gutiérrez Ruiz, and J.A. Álvarez Martínez. 2017. Putrescine: Essential factor for in vitro proliferation of Babesia bovis. Experimental Parasitology 175: 79–84. https://doi.org/10.1016/j.exppara.2017.01.010.

    Article  CAS  PubMed  Google Scholar 

  35. Wang, S., and Z. Dong. 2013. Primary cilia and kidney injury: Current research status and future perspectives. American Journal of Physiology. Renal Physiology 305 (8): F1085-1098. https://doi.org/10.1152/ajprenal.00399.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cantagrel, V., J.L. Silhavy, S.L. Bielas, D. Swistun, S.E. Marsh, J.Y. Bertrand, S. Audollent, T. Attié-Bitach, K.R. Holden, W.B. Dobyns, et al. 2008. Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome. American Journal of Human Genetics 83 (2): 170–179. https://doi.org/10.1016/j.ajhg.2008.06.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Duldulao, N.A., S. Lee, and Z. Sun. 2009. Cilia localization is essential for in vivo functions of the Joubert syndrome protein Arl13b/scorpion. Development 136 (23): 4033–4042. https://doi.org/10.1242/dev.036350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dustin, M.L., M.W. Olszowy, A.D. Holdorf, J. Li, S. Bromley, N. Desai, P. Widder, F. Rosenberger, P.A. van der Merwe, P.M. Allen, et al. 1998. A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts. Cell 94 (5): 667–677. https://doi.org/10.1016/s0092-8674(00)81608-6.

    Article  CAS  PubMed  Google Scholar 

  39. Tolvanen, T.A., S.N. Dash, Z. Polianskyte-Prause, V. Dumont, and S. Lehtonen. 2015. Lack of CD2AP disrupts Glut4 trafficking and attenuates glucose uptake in podocytes. Journal of Cell Science 128 (24): 4588–4600. https://doi.org/10.1242/jcs.175075.

    Article  CAS  PubMed  Google Scholar 

  40. Sever, S., and J. Reiser. 2015. CD2AP, dendrin, and cathepsin L in the kidney. American Journal of Pathology 185 (11): 3129–3130. https://doi.org/10.1016/j.ajpath.2015.06.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The present work was supported by the following grants: (1) The National Natural Science Foundation of China (81700579, 81670612); (2) The Three-year Project of Action for Shanghai Public Health System (GWIV‒18); (3) The National Key Research and Development Program of China (2016YFC0901502); (4) Shanghai Top Priority Key Clinical Disciplines Construction Project (2017ZZ02009); and (5) the 13th Five-Year Key Plan for the Military Medical Scientific Research Project (CBJ14L016). No authors have any financial conflicts of interest.

Author information

Authors and Affiliations

Authors

Contributions

Yang Yang and Changlin Mei designed the study; Yang Yang, Jie Zhou, Dongjuan Zhang, Jiayi Lv, Meihan Chen, Chao Wang, Minghui Song, Fagui He, and Shuwei Song carried out experiments; Yang Yang, Dongjuan Zhang, and Chao Wang analyzed the data; Yang Yang, Dongjuan Zhang, and Fagui He made the figures; Yang Yang drafted the paper; all authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Yang Yang or Changlin Mei.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 367 KB)

Supplementary file2 (DOCX 21 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhou, J., Zhang, D. et al. Dehydration Accelerates Cytogenesis and Cyst Growth in Pkd1−/− Mice by Regulating Macrophage M2 Polarization. Inflammation 46, 1272–1289 (2023). https://doi.org/10.1007/s10753-023-01806-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01806-5

KEY WORDS

Navigation