Skip to main content

Advertisement

Log in

Intestinal Microflora Altered by Vancomycin Exposure in Early Life Up-regulates Type 2 Innate Lymphocyte and Aggravates Airway Inflammation in Asthmatic Mice

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Allergic asthma is a chronic inflammatory disease primarily mediated by Th2 immune mechanisms. Exposure to antibiotics during early life is associated with an increased risk of allergic asthma, although the exact mechanism is not fully understood. In this study, mice were randomly divided into a normal saline control group (NS group), an OVA-induced asthma group (OVA group), a vancomycin treatment control group (VAN.NS group), and a vancomycin treatment the OVA-induced asthma group (VAN.OVA group). The results showed that vancomycin altered dominant species in experimental mice. The phylum level histogram showed that Bacteroides abundance was increased, and Firmicutes abundance was decreased in the OVA group. Airway inflammation and airway hyperresponsiveness (AHR) were aggravated in the vancomycin-exposed group. Enzyme-linked immunosorbent assay (ELISA) showed that the serum levels of IL-5, IL-13, and IL-33 in the OVA group were higher than those in the NS group, especially in the VAN.OVA group. The expression of GATA binding protein-3(GATA3) and retinoid acid receptor-related orphan receptor alpha (RORa) increased in the OVA group, even more so in the VAN.OVA group. Group 2 innate lymphoid cells (ILC2s) in the lung detected by flow cytometry was increased in OVA mice more than those in control mice, with a more remarkable increase in the VAN.OVA. Our results demonstrated that vancomycin used in early life could alter the intestinal microecology of mice, which, in turn, aggravates airway inflammation and upregulate type 2 innate lymphocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Papi, A., C. Brightling, S.E. Pedersen, and H.K. Reddel. 2018. Asthma. Lancet 391 (10122): 783–800.

    Article  PubMed  Google Scholar 

  2. Muehling, L.M., M.G. Lawrence, and J.A. Woodfolk. 2017. Pathogenic CD4+ T cells in patients with asthma. The Journal of Allergy and Clinical Immunology 140 (6): 1523–1540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kozik, A.J., and Y.J. Huang. 2019. The microbiome in asthma: Role in pathogenesis, phenotype, and response to treatment. Annals of Allergy, Asthma & Immunology 122 (3): 270–275.

    Article  Google Scholar 

  4. Wu, P., A.S. Feldman, C. Rosas-Salazar, K. James, G. Escobar, T. Gebretsadik, S.X. Li, K.N. Carroll, E. Walsh, E. Mitchel, S. Das, R. Kumar, C. Yu, W.D. Dupont, and T.V. Hartert. 2016. Relative importance and additive effects of maternal and infant risk factors on childhood asthma. PLoS ONE 11 (3): e0151705.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Levan, S.R., K.A. Stamnes, D.L. Lin, A.R. Panzer, E. Fukui, K. McCauley, K.E. Fujimura, M. McKean, D.R. Ownby, E.M. Zoratti, H.A. Boushey, M.D. Cabana, C.C. Johnson, and S.V. Lynch. 2019. Elevated faecal 12,13-diHOME concentration in neonates at high risk for asthma is produced by gut bacteria and impedes immune tolerance. Nature Microbiology 4 (11): 1851–1861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brown, E.M., D.J. Kenny, and R.J. Xavier. 2019. Gut microbiota regulation of T cells during inflammation and autoimmunity. Annual Review of Immunology 37: 599–624.

    Article  CAS  PubMed  Google Scholar 

  7. Ottman, N., L. Ruokolainen, A. Suomalainen, H. Sinkko, P. Karisola, J. Lehtimäki, M. Lehto, I. Hanski, H. Alenius, and N. Fyhrquist. 2019. Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. The Journal of Allergy and Clinical Immunology 143 (3): 1198-1206.e12.

    Article  CAS  PubMed  Google Scholar 

  8. Frati, F., C. Salvatori, C. Incorvaia, A. Bellucci, G. Di Cara, F. Marcucci, and S. Esposito. 2018. The role of the microbiome in asthma: The Gut-Lung axis. International Journal of Molecular Sciences 20 (1): 123.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sbihi, H., R.C. Boutin, C. Cutler, M. Suen, B.B. Finlay, and S.E. Turvey. 2019. Thinking bigger: How early-life environmental exposures shape the gut microbiome and influence the development of asthma and allergic disease. Allergy 74 (11): 2103–2115.

    Article  PubMed  Google Scholar 

  10. Arrieta, M.C., L.T. Stiemsma, P.A. Dimitriu, L. Thorson, S. Russell, S. Yurist-Doutsch, B. Kuzeljevic, M.J. Gold, H.M. Britton, D.L. Lefebvre, P. Subbarao, P. Mandhane, A. Becker, K.M. McNagny, M.R. Sears, T. Kollmann,  CHILD Study Investigators, W.W. Mohn, S.E. Turvey, B.B. Finlay. 2015. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307): 307ra152.

  11. Mulder, B., K.B. Pouwels, C.C. Schuiling-Veninga, H.J. Bos, T.W. de Vries, S.S. Jick, and E. Hak. 2016. Antibiotic use during pregnancy and asthma in preschool children: The influence of confounding. Clinical and Experimental Allergy 46 (9): 1214–1226.

    Article  CAS  PubMed  Google Scholar 

  12. Torow, N., and M.W. Hornef. 2017. The neonatal window of opportunity: Setting the stage for life-long host-microbial interaction and immune homeostasis. Journal of Immunology 198 (2): 557–563.

    Article  CAS  Google Scholar 

  13. Huang, C., F. Li, J. Wang, and Z. Tian. 2020. Innate-like lymphocytes and innate lymphoid cells in asthma. Clinical reviews in allergy & immunology 59 (3): 359–370.

    Article  CAS  Google Scholar 

  14. Nussbaum, J.C., S.J. Van Dyken, J. von Moltke, L.E. Cheng, A. Mohapatra, A.B. Molofsky, E.E. Thornton, M.F. Krummel, A. Chawla, H.E. Liang, and R.M. Locksley. 2013. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502 (7470): 245–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Christianson, C.A., N.P. Goplen, I. Zafar, C. Irvin, J.T. Good Jr., D.R. Rollins, B. Gorentla, W. Liu, M.M. Gorska, H. Chu, R.J. Martin, and R. Alam. 2015. Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33. The Journal of Allergy and Clinical Immunology 136 (1): 59-68.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Verma, M., S. Liu, L. Michalec, A. Sripada, M.M. Gorska, and R. Alam. 2018. Experimental asthma persists in IL-33 receptor knockout mice because of the emergence of thymic stromal lymphopoietin-driven IL-9+ and IL-13+ type 2 innate lymphoid cell subpopulations. The Journal of Allergy and Clinical Immunology 142 (3): 793-803.e8.

    Article  CAS  PubMed  Google Scholar 

  17. Satoh-Takayama, N., T. Kato, Y. Motomura, T. Kageyama, N. Taguchi-Atarashi, R. Kinoshita-Daitoku, E. Kuroda, J.P. Di Santo, H. Mimuro, K. Moro, and H. Ohno. 2020. Bacteria-induced group 2 innate lymphoid cells in the stomach provide immune protection through induction of IgA. Immunity 52 (4): 635-649.e4.

    Article  CAS  PubMed  Google Scholar 

  18. Russell, S.L., M.J. Gold, L.A. Reynolds, B.P. Willing, P. Dimitriu, L. Thorson, S.A. Redpath, G. Perona-Wright, M.R. Blanchet, W.W. Mohn, B.B. Finlay, and K.M. McNagny. 2015. Perinatal antibiotic-induced shifts in gut microbiota have differential effects on inflammatory lung diseases. The Journal of Allergy and Clinical Immunology 135 (1): 100–109.

    Article  CAS  PubMed  Google Scholar 

  19. Yang, X., H. Feng, X. Zhan, C. Zhang, R. Cui, L. Zhong, S. Ying, and Z. Chen. 2019. Early-life vancomycin treatment promotes airway inflammation and impairs microbiome homeostasis. Aging 11 (7): 2071–2081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zeng, Z., X. Lin, R. Zheng, H. Zhang, and W. Zhang. 2018. Celastrol alleviates airway hyperresponsiveness and inhibits Th17 responses in obese asthmatic mice. Frontiers in Pharmacology 9: 49.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Raftis, E.J., M.I. Delday, P. Cowie, S.M. McCluskey, M.D. Singh, A. Ettorre, and I.E. Mulder. 2018. Bifidobacterium breve MRx0004 protects against airway inflammation in a severe asthma model by suppressing both neutrophil and eosinophil lung infiltration. Scientific Reports 8 (1): 12024.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Duerr, C.U., and J.H. Fritz. 2017. Isolation of group 2 innate lymphoid cells from mouse lungs. Methods in Molecular Biology 1656: 253–261.

    Article  CAS  PubMed  Google Scholar 

  23. Munyaka, P.M., E. Khafipour, and J.E. Ghia. 2014. External influence of early childhood establishment of gut microbiota and subsequent health implications. Frontiers in Pediatrics 2: 109.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pascal, M., M. Perez-Gordo, T. Caballero, M.M. Escribese, M.N. Lopez Longo, O. Luengo, L. Manso, V. Matheu, E. Seoane, M. Zamorano, M. Labrador, and C. Mayorga. 2018. Microbiome and allergic diseases. Frontiers in Immunology 9: 1584.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fujimura, K.E., A.R. Sitarik, S. Havstad, D.L. Lin, S. Levan, D. Fadrosh, A.R. Panzer, B. LaMere, E. Rackaityte, N.W. Lukacs, G. Wegienka, H.A. Boushey, D.R. Ownby, E.M. Zoratti, A.M. Levin, C.C. Johnson, and S.V. Lynch. 2016. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nature Medicine 22 (10): 1187–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huo, X., S. Chu, L. Hua, Y. Bao, L. Du, J. Xu, and J. Zhang. 2018. The effect of breastfeeding on the risk of asthma in high-risk children: A case-control study in Shanghai China. BMC Pregnancy and Childbirth 18 (1): 341.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Depner, M., D.H. Taft, P.V. Kirjavainen, K.M. Kalanetra, A.M. Karvonen, S. Peschel, E. Schmausser-Hechfellner, C. Roduit, R. Frei, R. Lauener, A. Divaret-Chauveau, J.C. Dalphin, J. Riedler, M. Roponen, M. Kabesch, H. Renz, J. Pekkanen, F.M. Farquharson, P. Louis, D.A. Mills, et al. 2020. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nature Medicine 26 (11): 1766–1775.

    Article  CAS  PubMed  Google Scholar 

  28. Reijnders, D., G.H. Goossens, G.D. Hermes, E.P. Neis, C.M. van der Beek, J. Most, J.J. Holst, K. Lenaerts, R.S. Kootte, M. Nieuwdorp, A.K. Groen, S.W. Olde Damink, M.V. Boekschoten, H. Smidt, E.G. Zoetendal, C.H. Dejong, and E.E. Blaak. 2016. Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: A randomized double-blind placebo-controlled trial. Cell Metabolism 24 (1): 63–74.

    Article  CAS  PubMed  Google Scholar 

  29. Vrieze, A., C. Out, S. Fuentes, L. Jonker, I. Reuling, R.S. Kootte, E. van Nood, F. Holleman, M. Knaapen, J.A. Romijn, M.R. Soeters, E.E. Blaak, G.M. Dallinga-Thie, D. Reijnders, M.T. Ackermans, M.J. Serlie, F.K. Knop, J.J. Holst, C. van der Ley, I.P. Kema, et al. 2014. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. Journal of Hepatology 60 (4): 824–831.

    Article  CAS  PubMed  Google Scholar 

  30. Isaac, S., J.U. Scher, A. Djukovic, N. Jiménez, D.R. Littman, S.B. Abramson, E.G. Pamer, and C. Ubeda. 2017. Short- and long-term effects of oral vancomycin on the human intestinal microbiota. The Journal of Antimicrobial Chemotherapy 72 (1): 128–136.

    Article  CAS  PubMed  Google Scholar 

  31. Sun, L., X. Zhang, Y. Zhang, K. Zheng, Q. Xiang, N. Chen, Z. Chen, N. Zhang, J. Zhu, and Q. He. 2019. Antibiotic-induced disruption of gut microbiota alters local metabolomes and immune responses. Frontiers in Cellular and Infection Microbiology 9: 99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chiu, C.Y., M.L. Cheng, M.H. Chiang, Y.L. Kuo, M.H. Tsai, C.C. Chiu, and G. Lin. 2019. Gut microbial-derived butyrate is inversely associated with IgE responses to allergens in childhood asthma. Pediatric Allergy and Immunology 30 (7): 689–697.

    Article  PubMed  Google Scholar 

  33. Chu, S., H. Yu, Y. Chen, Q. Chen, B. Wang, and J. Zhang. 2015. Periconceptional and gestational exposure to antibiotics and childhood asthma. PLoS ONE 10 (10): e0140443.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zimmermann, P., N. Messina, W.W. Mohn, B.B. Finlay, and N. Curtis. 2019. Association between the intestinal microbiota and allergic sensitization, eczema, and asthma: A systematic review. The Journal of allergy and Clinical Immunology 143 (2): 467–485.

    Article  PubMed  Google Scholar 

  35. Durack, J., N.E. Kimes, D.L. Lin, M. Rauch, M. McKean, K. McCauley, A.R. Panzer, J.S. Mar, M.D. Cabana, and S.V. Lynch. 2018. Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation. Nature Communications 9 (1): 707.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kabata, H., K. Moro, S. Koyasu, and K. Asano. 2015. Group 2 innate lymphoid cells and asthma. Allergology International 64 (3): 227–234.

    Article  CAS  PubMed  Google Scholar 

  37. Vael, C., V. Nelen, S.L. Verhulst, H. Goossens, and K.N. Desager. 2008. Early intestinal Bacteroides fragilis colonisation and development of asthma. BMC Pulmonary Medicine 8: 19.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by 1. Wenzhou Municipal Science and Technology Bureau (Y20210007). 2. Zhejiang Medical and Health Major Projects of Science and Technology (WKJ-ZJ-2133).

Author information

Authors and Affiliations

Authors

Contributions

Qiangwei Xiang wrote the paper. Wei Zhao, Weixi Zhang design and edited the paper. Methodology, Like Wang, Jinyi Wan, Hang zheng. formal analysis, Xiumei Yan, data curation, Xixi lin. All authors read, revised and approved the final manuscript.

Corresponding authors

Correspondence to Wei Zhao or Weixi Zhang.

Ethics declarations

Ethics Approval and Consent to Participate

The study protocol was approved by Wenzhou Medical University Ethics Committee of Animal Experiments (ID Number: wydw 2020–0778).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Q., Yan, X., Lin, X. et al. Intestinal Microflora Altered by Vancomycin Exposure in Early Life Up-regulates Type 2 Innate Lymphocyte and Aggravates Airway Inflammation in Asthmatic Mice. Inflammation 46, 509–521 (2023). https://doi.org/10.1007/s10753-022-01748-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01748-4

KEY WORDS

Navigation