Skip to main content

Advertisement

Log in

Quercetin Mitigates Endothelial Activation in a Novel Intestinal-Endothelial-Monocyte/Macrophage Coculture Setup

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Atherosclerosis initiation is associated with a pro-inflammatory state of the endothelium. Quercetin is a flavonoid abundantly present in plant-based foods, with a possible impact on cardiovascular health. In this study, the effects of quercetin on lipopolysaccharide (LPS)-mediated endothelial inflammation and monocyte adhesion and migration, which are initial steps of the atherogenic process, are studied. Novel in vitro multicellular models simulating the intestinal-endothelial-monocytes/macrophages axis allowed to combine relevant intestinal flavonoid absorption, metabolism and efflux, and the consequent bioactivity towards peripheral endothelial cells. In this triple coculture, quercetin exposure decreased monocyte adhesion to and macrophage migration through an LPS-stressed endothelium, and this was associated with significantly lower levels of soluble vascular cell adhesion molecule-1 (sVCAM-1). Furthermore, quercetin decreased the pro-inflammatory cell environment upon LPS-induced endothelial activation, in terms of tumor necrosis factor- α (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and sVCAM-1 expression. These findings highlight a mode-of-action by which quercetin may positively impact the initial states of atherosclerosis under more physiologically relevant conditions in terms of quercetin concentrations, metabolites, and intercellular crosstalk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

After request, first author can provide data.

Code Availability

Not applicable.

References

  1. Endemann, D.H., and E.L. Schiffrin. 2004. Endothelial dysfunction. Journal of the American Society of Nephrology 15 (8): 1983–1992. https://doi.org/10.1097/01.ASN.0000132474.50966.DA.

    Article  CAS  PubMed  Google Scholar 

  2. Page, A.V., and W.C. Liles. 2013. Biomarkers of endothelial activation/dysfunction in infectious diseases. Virulence 4 (6): 507–516. https://doi.org/10.4161/viru.24530.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kershaw, K.N., A.D. Lane-Cordova, M.R. Carnethon, H.A. Tindle, and K. Liu. 2017. Chronic stress and endothelial dysfunction: The multi-ethnic study of atherosclerosis (MESA). American journal of hypertension 30 (1): 75–80. https://doi.org/10.1093/ajh/hpw103.

    Article  CAS  PubMed  Google Scholar 

  4. WHO. 2019. World Health Organization cardiovascular disease risk charts: Revised models to estimate risk in 21 global regions. The Lancet Global Health 7 (10): e1332–e1345. https://doi.org/10.1016/S2214-109X(19)30318-3.

    Article  Google Scholar 

  5. Gimbrone, M.A., Jr., and G. Garcia-Cardena. 2016. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circulation research 118 (4): 620–636. https://doi.org/10.1161/CIRCRESAHA.115.306301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bowman, J.D., S. Surani, and M.A. Horseman. 2017. Endotoxin toll-like receptor-4 and atherosclerotic heart disease. Current cardiology reviews 13 (2): 86–93. https://doi.org/10.2174/1573403X12666160901145313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rienks, J., J. Barbaresko, and U. Nothlings. 2017. Association of polyphenol biomarkers with cardiovascular disease and mortality risk: A systematic review and meta-analysis of observational studies. Nutrients 9 (4): 415. https://doi.org/10.3390/nu9040415.

    Article  CAS  PubMed Central  Google Scholar 

  8. Wang, X., Y.Y. Ouyang, J. Liu, and G. Zhao. 2014. Flavonoid intake and risk of CVD: A systematic review and meta-analysis of prospective cohort studies. British Journal of Nutrition 111 (1): 1–11. https://doi.org/10.1017/S000711451300278X.

    Article  CAS  PubMed  Google Scholar 

  9. Tang, Z., M. Li, X. Zhang, and W. Hou. 2016. Dietary flavonoid intake and the risk of stroke: A dose-response meta-analysis of prospective cohort studies. British Medical Journal Open 6 (6): e008680. https://doi.org/10.1136/bmjopen-2015-008680.

    Article  Google Scholar 

  10. Grosso, G., A. Micek, J. Godos, A. Pajak, et al. 2017. Dietary flavonoid and Lignan intake and mortality in prospective cohort studies: Systematic review and dose-response meta-analysis. American journal of epidemiology 185 (12): 1304–1316. https://doi.org/10.1093/aje/kww207.

    Article  PubMed  Google Scholar 

  11. Kim, Y., and Y. Je. 2017. Flavonoid intake and mortality from cardiovascular disease and all causes: A meta-analysis of prospective cohort studies. Clinical nutrition ESPEN 20: 68–77. https://doi.org/10.1016/j.clnesp.2017.03.004.

    Article  PubMed  Google Scholar 

  12. Milenkovic, D., C. Morand, A. Cassidy, A. Konic-Ristic, et al. 2017. Interindividual variability in biomarkers of cardiometabolic health after consumption of major plant-food bioactive compounds and the determinants involved. Advances in Nutrition 8 (4): 558–570. https://doi.org/10.3945/an.116.013623.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Manach, C., D. Milenkovic, T. Van de Wiele, A. Rodriguez-Mateos, et al. 2017. Addressing the inter-individual variation in response to consumption of plant food bioactives: Towards a better understanding of their role in healthy aging and cardiometabolic risk reduction. Molecular nutrition & food research 61 (6): 1600557. https://doi.org/10.1002/mnfr.201600557.

    Article  CAS  Google Scholar 

  14. Formica, J.V., and W. Regelson. 1995. Review of the biology of quercetin and related bioflavonoids. Food and chemical toxicology 33 (12): 1061–1080.

    Article  CAS  Google Scholar 

  15. Erlund, I. 2004. Review of the flavonoids quercetin hesperetin naringenin Dietary sources bioactivities and epidemiology. Nutrition research 24 (10): 851–874. https://doi.org/10.1016/j.nutres.2004.07.005.

    Article  CAS  Google Scholar 

  16. Russo, M., C. Spagnuolo, I. Tedesco, S. Bilotto, and G.L. Russo. 2012. The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochemical pharmacology 83 (1): 6–15.

    Article  CAS  Google Scholar 

  17. Serban, M.C., A. Sahebkar, A. Zanchetti, D.P. Mikhailidis, et al. 2016. Effects of quercetin on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Journal of the American Heart Association 5 (7): e002713. https://doi.org/10.1161/JAHA.115.002713.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ou, Q., Z. Zheng, Y. Zhao, and W. Lin. 2020. Impact of quercetin on systemic levels of inflammation: A meta-analysis of randomised controlled human trials. International journal of food sciences and nutrition 71 (2): 152–163. https://doi.org/10.1080/09637486.2019.1627515.

    Article  CAS  PubMed  Google Scholar 

  19. Kroon, P.A., M.N. Clifford, A. Crozier, A.J. Day, et al. 2004. How should we assess the effects of exposure to dietary polyphenols in vitro? The American journal of clinical nutrition 80 (1): 15–21.

    Article  CAS  Google Scholar 

  20. Scalbert, A., and G. Williamson. 2000. Dietary intake and bioavailability of polyphenols. The Journal of nutrition 130 (8): 2073s–2085s.

    Article  CAS  Google Scholar 

  21. Balentine, D.A., J.T. Dwyer, J.W. Erdman Jr., M.G. Ferruzzi, et al. 2015. Recommendations on reporting requirements for flavonoids in research. The American journal of clinical nutrition 101 (6): 1113–1125. https://doi.org/10.3945/ajcn.113.071274.

    Article  CAS  PubMed  Google Scholar 

  22. Avila-Galvez, M.A., A. Gonzalez-Sarrias, and J.C. Espin. 2018. In vitro research on dietary polyphenols and health: A call of caution and a guide on how to proceed. Journal of Agricultural and Food Chemistry 66 (30): 7857–7858. https://doi.org/10.1021/acs.jafc.8b03377.

    Article  CAS  PubMed  Google Scholar 

  23. Williamson, G., C.D. Kay, and A. Crozier. 2018. The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Comprehensive Reviews in Food Science and Food Safety 17 (5): 1054–1112. https://doi.org/10.1111/1541-4337.12351.

    Article  PubMed  Google Scholar 

  24. Needs, P.W., and P.A. Kroon. 2006. Convenient syntheses of metabolically important quercetin glucuronides and sulfates. Tetrahedron 62 (29): 6862–6868. https://doi.org/10.1016/j.tet.2006.04.102.

    Article  CAS  Google Scholar 

  25. Tribolo, S., F. Lodi, C. Connor, S. Suri, et al. 2008. Comparative effects of quercetin and its predominant human metabolites on adhesion molecule expression in activated human vascular endothelial cells. Atherosclerosis 197 (1): 50–56. https://doi.org/10.1016/j.atherosclerosis.2007.07.040.

    Article  CAS  PubMed  Google Scholar 

  26. Le Ferrec, E., C. Chesne, P. Artusson, D. Brayden, et al. 2001. In vitro models of the intestinal barrier: The report and recommendations of ECVAM Workshop 46. Alternatives to Laboratory Animals 29 (6): 649–668. https://doi.org/10.1177/026119290102900604.

    Article  PubMed  Google Scholar 

  27. Gonzales, G.B., J. Van Camp, H. Vissenaekens, K. Raes, et al. 2015. Review on the use of cell cultures to study metabolism, transport, and accumulation of flavonoids: From mono-cultures to co-culture systems. Comprehensive reviews in food science and food safety 14 (6): 741–754. https://doi.org/10.1111/1541-4337.12158.

    Article  CAS  Google Scholar 

  28. Toaldo, I.M., J. Van Camp, G.B. Gonzales, S. Kamiloglu, et al. 2016. Resveratrol improves TNF-alpha-induced endothelial dysfunction in a coculture model of a Caco-2 with an endothelial cell line. The Journal of nutritional biochemistry 36: 21–30.

    Article  CAS  Google Scholar 

  29. Wu, T., C. Grootaert, J. Pitart, N.K. Vidovic, et al. 2018. Aronia (Aronia melanocarpa) polyphenols modulate the microbial community in a simulator of the human intestinal microbial ecosystem (SHIME) and decrease secretion of proinflammatory markers in a Caco-2/endothelial cell coculture model. Molecular nutrition & food research 62 (22): 1800607. https://doi.org/10.1002/mnfr.201800607.

    Article  CAS  Google Scholar 

  30. Kamiloglu, S., C. Grootaert, E. Capanoglu, C. Ozkan, et al. 2017. Anti-inflammatory potential of black carrot (Daucus carota L.) polyphenols in a co-culture model of intestinal Caco-2 and endothelial EA.hy926 cells. Molecular Nutrition & Food Research 61 (2): 1600455. https://doi.org/10.1002/mnfr.201600455.

  31. Kuntz, S., H. Asseburg, S. Dold, A. Rompp, et al. 2015. Inhibition of low-grade inflammation by anthocyanins from grape extract in an in vitro epithelial-endothelial co-culture model. Food & function 6 (4): 1136–1149. https://doi.org/10.1039/c4fo00755g.

    Article  CAS  Google Scholar 

  32. Bian, Y., Y. Dong, J. Sun, M. Sun, et al. 2020. Protective effect of kaempferol on LPS-induced inflammation and barrier dysfunction in a coculture model of intestinal epithelial cells and intestinal microvascular endothelial cells. Journal of agricultural and food chemistry 68 (1): 160–167. https://doi.org/10.1021/acs.jafc.9b06294.

    Article  CAS  PubMed  Google Scholar 

  33. Chavez-Sanchez, L., J.E. Espinosa-Luna, K. Chavez-Rueda, M.V. Legorreta-Haquet, et al. 2014. Innate immune system cells in atherosclerosis. Archives of medical research 45 (1): 1–14. https://doi.org/10.1016/j.arcmed.2013.11.007.

    Article  CAS  PubMed  Google Scholar 

  34. Mestas, J., and K. Ley. 2008. Monocyte-endothelial cell interactions in the development of atherosclerosis. Trends in cardiovascular medicine 18 (6): 228–232. https://doi.org/10.1016/j.tcm.2008.11.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gustot, A., V. Raussens, M. Dehousse, M. Dumoulin, et al. 2013. Activation of innate immunity by lysozyme fibrils is critically dependent on cross-beta sheet structure. Cellular and Molecular Life Sciences 70 (16): 2999–3012. https://doi.org/10.1007/s00018-012-1245-5.

    Article  CAS  PubMed  Google Scholar 

  36. Vissenaekens, H., G. Smagghe, H. Criel, C. Grootaert, et al. 2021. Intracellular quercetin accumulation and its impact on mitochondrial dysfunction in intestinal Caco-2 cells. Food Research International 145: 110430. https://doi.org/10.1016/j.foodres.2021.110430.

    Article  CAS  PubMed  Google Scholar 

  37. Guo, S., R. Al-Sadi, H.M. Said, and T.Y. Ma. 2013. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. The American journal of pathology 182 (2): 375–387. https://doi.org/10.1016/j.ajpath.2012.10.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ferraris, R.P., S. Yasharpour, K.C. Lloyd, R. Mirzayan, and J.M. Diamond. 1990. Luminal glucose concentrations in the gut under normal conditions. American Journal of Physiology-Gastrointestinal and Liver Physiology 259 (5): G822-G837. https://doi.org/10.1152/ajpgi.1990.259.5.G822.

  39. Henry, P., F. Thomas, A. Benetos, and L. Guize. 2002. Impaired fasting glucose, blood pressure and cardiovascular disease mortality. Hypertension 40 (4): 458–463. https://doi.org/10.1161/01.hyp.0000032853.95690.26.

    Article  CAS  PubMed  Google Scholar 

  40. McMillin, J.M. Blood glucose. In Clinical methods: the history physical and laboratory examinations 3rd edition, eds. H.K. Walker, W.D. Hall, and J.W. Hurst, editors. Boston: Butterworths.

  41. Ackermann, T., and S. Tardito. 2019. Cell culture medium formulation and its implications in cancer metabolism. Trends in Cancer 5 (6): 329–332. https://doi.org/10.1016/j.trecan.2019.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Adibi, S.A., and D.W. Mercer. 1973. Protein digestion in human intestine as reflected in luminal, mucosal, and plasma amino-acid concentrations after meals. The Journal of clinical investigation 52 (7): 1586–1594. https://doi.org/10.1172/Jci107335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Srinivasan, B., A.R. Kolli, M.B. Esch, H.E. Abaci, et al. 2015. TEER measurement techniques for in vitro barrier model systems. Journal of laboratory automation 20 (2): 107–126. https://doi.org/10.1177/2211068214561025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Velandia-Romero, M.L., M.A. Calderon-Pelaez, A. Balbas-Tepedino, R.A. Marquez-Ortiz, et al. 2020. Extracellular vesicles of U937 macrophage cell line infected with DENV-2 induce activation in endothelial cells EA.hy926. PLoS One 15 (1): e0227030. https://doi.org/10.1371/journal.pone.0227030.

  45. Liu, Y., L. Bao, L. Xuan, B. Song, et al. 2015. Chebulagic acid inhibits the LPS-induced expression of TNF-alpha and IL-1beta in endothelial cells by suppressing MAPK activation. Experimental and therapeutic medicine 10 (1): 263–268. https://doi.org/10.3892/etm.2015.2447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim, T.H., and J.S. Bae. 2010. Ecklonia cava extracts inhibit lipopolysaccharide induced inflammatory responses in human endothelial cells. Food and Chemical Toxicology 48 (6): 1682–1687. https://doi.org/10.1016/j.fct.2010.03.045.

    Article  CAS  PubMed  Google Scholar 

  47. Yuan, H.X., X.E. Feng, E.L. Liu, R. Ge, et al. 2019. 5,2'-dibromo-2,4',5'-trihydroxydiphenylmethanone attenuates LPS-induced inflammation and ROS production in EA.hy926 cells via HMBOX1 induction. Journal of cellular and molecular medicine 23 (1): 453–463. https://doi.org/10.1111/jcmm.13948.

  48. Rosenfeld, M.E. 2000. An overview of the evolution of the atherosclerotic plaque: from fatty streak to plaque rupture and thrombosis. Zeitschrift für Kardiologie 89 (7): VII2-VII6. https://doi.org/10.1007/s003920070045.

  49. Kolaczkowska, E., and P. Kubes. 2013. Neutrophil recruitment and function in health and inflammation. Nature reviews immunology 13 (3): 159–175. https://doi.org/10.1038/nri3399.

    Article  CAS  PubMed  Google Scholar 

  50. Lee, W., S.K. Ku, and J.S. Bae. 2015. Anti-inflammatory effects of Baicalin, Baicalein, and Wogonin in vitro and in vivo. Inflammation 38 (1): 110–125. https://doi.org/10.1007/s10753-014-0013-0.

    Article  CAS  PubMed  Google Scholar 

  51. Lee, W., S.K. Ku, and J.S. Bae. 2014. Vascular barrier protective effects of orientin and isoorientin in LPS-induced inflammation in vitro and in vivo. Vascular Pharmacology 62 (1): 3–14. https://doi.org/10.1016/j.vph.2014.04.006.

    Article  CAS  PubMed  Google Scholar 

  52. Cho, Y.S., C.H. Kim, T.S. Ha, and H.Y. Ahn. 2016. Inhibition of Nf-Kb and Stat3 by quercetin with suppression of adhesion molecule expression in vascular endothelial cells. Farmácia 64 (5): 668–673.

    CAS  Google Scholar 

  53. Legein, B., L. Temmerman, E.A. Biessen, and E. Lutgens. 2013. Inflammation and immune system interactions in atherosclerosis. Cellular and Molecular Life Sciences 70 (20): 3847–3869. https://doi.org/10.1007/s00018-013-1289-1.

    Article  CAS  PubMed  Google Scholar 

  54. Gessani, S., U. Testa, B. Varano, P. Di Marzio, et al. 1993. Enhanced production of LPS-induced cytokines during differentiation of human monocytes to macrophages Role of LPS receptors. The Journal of Immunology 151 (7): 3758–3766.

    CAS  PubMed  Google Scholar 

  55. Park, E.K., H.S. Jung, H.I. Yang, M.C. Yoo, et al. 2007. Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflammation research 56 (1): 45–50. https://doi.org/10.1007/s00011-007-6115-5.

    Article  CAS  PubMed  Google Scholar 

  56. Triantafilou, M., and K. Triantafilou. 2005. The dynamics of LPS recognition: Complex orchestration of multiple receptors. Journal of endotoxin research 11 (1): 5–11. https://doi.org/10.1179/096805105225006641.

    Article  CAS  PubMed  Google Scholar 

  57. Wolff, B., A.R. Burns, J. Middleton, and A. Rot. 1998. Endothelial cell “memory” of inflammatory stimulation: Human venular endothelial cells store interleukin 8 in Weibel-Palade bodies. The Journal of experimental medicine 188 (9): 1757–1762. https://doi.org/10.1084/jem.188.9.1757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kawai, Y., T. Nishikawa, Y. Shiba, S. Saito, et al. 2008. Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries: Implication in the anti-atherosclerotic mechanism of dietary flavonoids. Journal of Biological chemistry 283 (14): 9424–9434. https://doi.org/10.1074/jbc.M706571200.

    Article  CAS  PubMed  Google Scholar 

  59. Eklou-Lawson, M., F. Bernard, N. Neveux, C. Chaumontet, et al. 2009. Colonic luminal ammonia and portal blood l-glutamine and l-arginine concentrations: A possible link between colon mucosa and liver ureagenesis. Amino Acids 37 (4): 751–760. https://doi.org/10.1007/s00726-008-0218-3.

    Article  CAS  PubMed  Google Scholar 

  60. McKee, T.J., and S.V. Komarova. 2017. Is it time to reinvent basic cell culture medium? American Journal of Physiology-Cell Physiology 312 (5): C624–C626. https://doi.org/10.1152/ajpcell.00336.2016.

    Article  PubMed  Google Scholar 

  61. Cani, P.D., J. Amar, M.A. Iglesias, M. Poggi, et al. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56 (7): 1761–1772. https://doi.org/10.2337/db06-1491.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Hanne Vissenaekens is holder of a doctoral (PhD) grant Strategic Basic Research (SB) of Research Foundation-Flanders (FWO-Vlaanderen; 1S18417N). The authors would like to thank BOF (01B04212) for the funding of the automated TEER equipment (REMS) and flow cytometer.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Hanne Vissenaekens, Charlotte Grootaert, Katleen Raes, Guy Smagghe, John Van Camp. Data curation: Hanne Vissenaekens. Formal analysis: Hanne Vissenaekens. Funding acquisition: Hanne Vissenaekens, Charlotte Grootaert, Katleen Raes, Guy Smagghe, John Van Camp. Investigation: Hanne Vissenaekens, Julie De Munck. Methodology: Hanne Vissenaekens, Charlotte Grootaert, Nico Boon. Project administration: Charlotte Grootaert, Katleen Raes, Guy Smagghe, John Van Camp. Resources: Nico Boon, Katleen Raes, Guy Smagghe, John Van Camp. Software: Hanne Vissenaekens. Supervision: Katleen Raes, Guy Smagghe, John Van Camp. Validation: Hanne Vissenaekens, Charlotte Grootaert. Visualization: Hanne Vissenaekens, Charlotte Grootaert. Writing-original draft: Hanne Vissenaekens. Writing-review and editing: Charlotte Grootaert, Katleen Raes, Julie De Munck, Guy Smagghe, Nico Boon, John Van Camp.

Corresponding author

Correspondence to John Van Camp.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.743 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vissenaekens, H., Grootaert, C., Raes, K. et al. Quercetin Mitigates Endothelial Activation in a Novel Intestinal-Endothelial-Monocyte/Macrophage Coculture Setup. Inflammation 45, 1600–1611 (2022). https://doi.org/10.1007/s10753-022-01645-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01645-w

KEY WORDS

Navigation