Skip to main content

Advertisement

Log in

Association of miR-155, miR-187 and Inflammatory Cytokines IL-6, IL-10 and TNF-α in Chronic Opium Abusers

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Substance use disorders are known to be associated with inflammation. However, the dynamics of inflammatory cytokines and microRNA in chronic opium use is yet unexplored. The current study determined the levels of inflammatory cytokines TNF-α, IL-6, IL-10 and immune-regulatory miR-155 and miR-187 expressions in chronic opioid use disorder. Adults (n = 48) meeting the 5th Edition of the DSM criteria regarding opioid use disorder and healthy controls (n = 46) were included in the study. Inflammatory cytokines IL-10, IL-6, and TNF-α were analyzed from serum samples, and peripheral blood mononuclear cells processed for miRNA expression. Cases showed significantly raised IL-10 and TNF-α and reduced IL-6. Dose-dependent upregulation of miR-155-5p and miR-187-5p was evident at opium dose >1500 g/month, with a corresponding increase of TNF-α and IL-10. MiR-155 showed a significant positive correlation with IL-6 and TNF-α levels, while miR-187 showed a significant negative association with TNF-α at ≥1000 g/month consumption. Therefore, increasing consumption of opium probably enhances inflammation leading to immunomodulation and aberrant expression of hsa-miR-155-5p and hsa-miR-187-5p in opioid use disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Purohit, P., N. Nebhinani, and P. Sharma. (2017). Evaluation of Antioxidant Status, High Sensitivity C-reactive Protein, and Insulin Resistance in Male Chronic Opiate Users Without Comorbidities. Indian Journal of Psychological Medicine 39 (3):299–305. https://doi.org/10.4103/0253-7176.207330.

  2. Liang, X., R. Liu, C. Chen, F. Ji, and T. Li. (2016). Opioid System Modulates the Immune Function: A Review. Translational Perioperative and Pain Medicine 1 (1):5–13.

  3. Himmerich, H., S. Bartsch, H. Hamer, R. Mergl, J. Schönherr, C. Petersein, A. Munzer, K.C. Kirkby, K. Bauer, and U. Sack. (2014). Modulation of cytokine production by drugs with antiepileptic or mood stabilizer properties in anti-CD3- and anti-Cd40-stimulated blood in vitro. Oxidative Medicine and Cellular Longevity 2014:806162. https://doi.org/10.1155/2014/806162.

  4. Asadikaram, G., S. Igder, Z. Jamali, N. Shahrokhi, H. Najafipour, M. Shokoohi, A. Jafarzadeh, and M. Kazemi-Arababadi. (2015). Effects of Different Concentrations of Opium on the Secretion of Interleukin-6, Interferon-γ and Transforming Growth Factor Beta Cytokines from Jurkat Cells. Addiction & Health 7 (1–2):47–53.

  5. Ghazavi, A., G. Mosayebi, H. Solhi, M. Rafiei, and S.M. Moazzeni. (2013). Serum markers of inflammation and oxidative stress in chronic opium (Taryak) smokers. Immunology Letters 153 (1–2):22–26. https://doi.org/10.1016/j.imlet.2013.07.001.

  6. Ghazavi, A., Solhi, H., Moazzeni, S. M., Rafiei, M., and Mosayebi, G. (2013). Cytokine profiles in long-term smokers of opium (Taryak). Journal of Addiction Medicine 7(3): 200–203. https://doi.org/10.1097/ADM.0b013e31828baede.

  7. Seney M.L., Kim S.-M., Glausier J.R., Hildebrand M.A., Xue X., Zong W., Wang J., Shelton M.A., Phan B.N., Srinivasan C., Pfenning A.R., Tseng G.C., Lewis D.A., Freyberg Z. and Logan R.W. (2021). Transcriptional alterations in dorsolateral prefrontal cortex and nucleus accumbens implicate neuroinflammation and synaptic remodeling in opioid use disorder, Biological Psychiatry 90(8):550-562. https://doi.org/10.1016/j.biopsych.2021.06.007.

  8. Roy, D., A. Modi, M. Khokhar, S. Sankanagoudar, D. Yadav, S. Sharma, P. Purohit, and P. Sharma. (2021). MicroRNA 21 Emerging Role in Diabetic Complications: A Critical Update. Current Diabetes Reviews 17(2):122–135. https://doi.org/10.2174/1573399816666200503035035.

  9. Pauley, K.M., and E.K. Chan. (2008). MicroRNAs and their emerging roles in immunology. Annals of the New York Academy of Sciences 1143:226–239. https://doi.org/10.1196/annals.1443.009.

  10. Wu, C.J., and L.F. Lu. (2017). MicroRNA in Immune Regulation. Current topics in Microbiology and Immunology 410: 249–267. https://doi.org/10.1007/82_2017_65.

  11. Xiao, C., & Rajewsky, K. (2009). MicroRNA control in the immune system: basic principles. Cell, 136(1), 26–36. https://doi.org/10.1016/j.cell.2008.12.027.

  12. Gowen, A. M., Odegaard, K. E., Hernandez, J., Chand, S., Koul, S., Pendyala, G., and Yelamanchili, S. V. (2021). Role of microRNAs in the pathophysiology of addiction. Wiley interdisciplinary reviews. RNA 12(3):e1637. https://doi.org/10.1002/wrna.1637.

  13. Yan, B., Hu, Z., Yao, W., Le, Q., Xu, B., Liu, X., and Ma, L. (2017). MiR-218 targets MeCP2 and inhibits heroin seeking behavior. Scientific Reports 7:40413. https://doi.org/10.1038/srep40413.

  14. Toyama, K., Kiyosawa, N., Watanabe, K., and Ishizuka, H. (2017). Identification of Circulating miRNAs Differentially Regulated by Opioid Treatment. International Journal of Molecular Sciences 18(9):1991. https://doi.org/10.3390/ijms18091991.

  15. Zhang, K., Jing, X., & Wang, G. (2016). MicroRNAs as regulators of drug abuse and immunity. Central-European Journal of Immunology 41(4):426–434. https://doi.org/10.5114/ceji.2016.65142.

  16. Shi, X., Li, Y., Yan, P., Shi, Y., and Lai, J. (2020). Weighted gene co-expression network analysis to explore the mechanism of heroin addiction in human nucleus accumbens. Journal of Cellular Biochemistry 121(2):1870–1879. https://doi.org/10.1002/jcb.29422.

  17. Asquith, M., Pasala, S., Engelmann, F., Haberthur, K., Meyer, C., Park, B., Grant, K. A., and Messaoudi, I. (2014). Chronic ethanol consumption modulates growth factor release, mucosal cytokine production, and microRNA expression in nonhuman primates. Alcoholism, Clinical and Experimental Research 38(4):980–993. https://doi.org/10.1111/acer.12325.

  18. Hu, R., Huffaker, T. B., Kagele, D. A., Runtsch, M. C., Bake, E., Chaudhuri, A. A., Round, J. L., and O'Connell, R. M. (2013). MicroRNA-155 confers encephalogenic potential to Th17 cells by promoting effector gene expression. Journal of Immunology (Baltimore, Md.: 1950) 190(12):5972–5980. https://doi.org/10.4049/jimmunol.1300351.

  19. Rossato, M., Curtale, G., Tamassia, N., Castellucci, M., Mori, L., Gasperini, S., Mariotti, B., De Luca, M., Mirolo, M., Cassatella, M. A., Locati, M., and Bazzoni, F. (2012). IL-10-induced microRNA-187 negatively regulates TNF-α, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proceedings of the National Academy of Sciences of the United States of America 109(45):E3101–E3110. https://doi.org/10.1073/pnas.1209100109.

  20. Quinn, S. R., & O'Neill, L. A. (2014). The role of microRNAs in the control and mechanism of action of IL-10. Current Topics in Microbiology and Immunology 380: 145–155. https://doi.org/10.1007/978-3-662-43492-5_7.

  21. McCoy, C. E., Sheedy, F. J., Qualls, J. E., Doyle, S. L., Quinn, S. R., Murray, P. J., and O'Neill, L. A. (2010). IL-10 inhibits miR-155 induction by toll-like receptors. The Journal of Biological Chemistry 285(27):20492–20498. https://doi.org/10.1074/jbc.M110.102111.

  22. Loftis, J.M., and M. Huckans. (2013). Substance use disorders: psychoneuroimmunological mechanisms and new targets for therapy. Pharmacology & Therapeutics 139(2): 289–300. https://doi.org/10.1016/j.pharmthera.2013.04.011.

  23. Friedman, H., Newton, C., and Klein, T. W. (2003). Microbial infections, immunomodulation, and drugs of abuse. Clinical microbiology Reviews 16(2):209–219. https://doi.org/10.1128/cmr.16.2.209-219.2003.

  24. Roy, D., Tomo, S., Modi, A., Purohit, P., and Sharma, P. (2020). Optimising total RNA quality and quantity by phenol-chloroform extraction method from human visceral adipose tissue: A standardisation study. MethodsX 7:101113. https://doi.org/10.1016/j.mex.2020.101113.

  25. Chang, L., Zhou, G., Soufan, O., and Xia, J. (2020). miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Research, 48(W1):W244–W251. https://doi.org/10.1093/nar/gkaa467.

  26. Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M. T., and Lin, C. Y. (2014). cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 8 Suppl 4(Suppl 4), S11. https://doi.org/10.1186/1752-0509-8-S4-S11.

  27. Doncheva, N. T., Morris, J. H., Gorodkin, J., and Jensen, L. J. (2019). Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. Journal of Proteome Research, 18(2):623–632. https://doi.org/10.1021/acs.jproteome.8b00702.

  28. Li, J., Han, X., Wan, Y., Zhang, S., Zhao, Y., Fan, R., Cui, Q., and Zhou, Y. (2018). TAM 2.0: tool for MicroRNA set analysis. Nucleic Acids Research 46(W1):W180–W185. https://doi.org/10.1093/nar/gky509.

  29. Woodbury, M. E., Freilich, R. W., Cheng, C. J., Asai, H., Ikezu, S., Boucher, J. D., Slack, F., and Ikezu, T. (2015). miR-155 Is Essential for Inflammation-Induced Hippocampal Neurogenic Dysfunction. The Journal of Neuroscience: the official journal of the Society for Neuroscience 35(26):9764–9781.https://doi.org/10.1523/JNEUROSCI.4790-14.2015.

  30. Qayum, A.A., A. Paranjape, D. Abebayehu, E.M. Kolawole, T.T. Haque, J.J. McLeod, A.J. Spence, H.L. Caslin, M.T. Taruselli, A.P. Chumanevich, B. Baker, C.A. Oskeritzian, and J.J. Ryan. 2016. IL-10-induced miR-155 Targets SOCS1 to enhance IgE-mediated mast cell function. Journal of Immunology (Baltimore, Md.: 1950), 196(11), 4457–4467. https://doi.org/10.4049/jimmunol.1502240.

  31. Yee, D., K.M. Shah, M.C. Coles, T.V. Sharp, and D. Lagos. (2017). MicroRNA-155 induction via TNF-α and IFN-γ suppresses expression of programmed death ligand-1 (PD-L1) in human primary cells. The Journal of Biological Chemistry 292 (50): 20683–20693. https://doi.org/10.1074/jbc.M117.809053.

  32. Shao, Y., Cheng, Z., Li, X., Chernaya, V., Wang, H., and Yang, X. F. (2014). Immunosuppressive/anti-inflammatory cytokines directly and indirectly inhibit endothelial dysfunction--a novel mechanism for maintaining vascular function. Journal of Hematology & Oncology 7:80. https://doi.org/10.1186/s13045-014-0080-6.

  33. Alivernini, S., Gremese, E., McSharry, C., Tolusso, B., Ferraccioli, G., McInnes, I. B., and Kurowska-Stolarska, M. (2018). MicroRNA-155-at the Critical Interface of Innate and Adaptive Immunity in Arthritis. Frontiers in Immunology 8:1932. https://doi.org/10.3389/fimmu.2017.01932.

  34. Li, T. R., Jia, Y. J., Wang, Q., Shao, X. Q., Zhang, P., and Lv, R. J. (2018). Correlation between tumor necrosis factor alpha mRNA and microRNA-155 expression in rat models and patients with temporal lobe epilepsy. Brain Research 1700:56–65. https://doi.org/10.1016/j.brainres.2018.07.013.

  35. Cheung, S. T., So, E. Y., Chang, D., Ming-Lum, A., and Mui, A. L. (2013). Interleukin-10 inhibits lipopolysaccharide induced miR-155 precursor stability and maturation. PloS One 8(8):e71336. https://doi.org/10.1371/journal.pone.0071336.

  36. Banerjee, S., Meng, J., Das, S., Krishnan, A., Haworth, J., Charboneau, R., Zeng, Y., Ramakrishnan, S., and Roy, S. (2013). Morphine induced exacerbation of sepsis is mediated by tempering endotoxin tolerance through modulation of miR-146a. Scientific Reports 3, 1977. https://doi.org/10.1038/srep01977.

  37. Shih, R. H., Wang, C. Y., and Yang, C. M. (2015). NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review. Frontiers in Molecular Neuroscience 8:77. https://doi.org/10.3389/fnmol.2015.00077.

  38. Alinejad, S., Kazemi, T., Zamani, N., Hoffman, R. S., and Mehrpour, O. (2015). A systematic review of the cardiotoxicity of methadone. EXCLI Journal 14: 577–600. https://doi.org/10.17179/excli2015-553.

Download references

Funding

This study was funded by an internal grant from the Institutional Review and Ethics Board, AIIMS Jodhpur [AIIMS/Res(02)/2015-16/308].

Author information

Authors and Affiliations

Authors

Contributions

Purvi Purohit: Grant awarded, Study concept, study design, sample analysis, data collection and analysis, interpretation, drafting manuscript, manuscript editing. Dipayan Roy: Data collection and analysis, drafting manuscript, manuscript editing. Shailendra Dwivedi: study design, sample analysis, manuscript editing. Naresh Nebhinani: Patient recruitment, manuscript editing. Praveen Sharma: Data analysis, Manuscript editing.

Corresponding author

Correspondence to Purvi Purohit.

Ethics declarations

Ethics

The study commenced after institutional ethics permission for the use of biological samples from study participants.

Ethics Approval and Consent to Participate

The study was approved by the institutional ethics committee (IEC) before commencement.

Informed Consent

All the study participants were informed about the objective of the study, the nature of study and were given free will to withdraw from the study at any time.

Consent for Publication

The study was approved for publication according to the IEC.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 69 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purohit, P., Roy, D., Dwivedi, S. et al. Association of miR-155, miR-187 and Inflammatory Cytokines IL-6, IL-10 and TNF-α in Chronic Opium Abusers. Inflammation 45, 554–566 (2022). https://doi.org/10.1007/s10753-021-01566-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01566-0

KEY WORDS

Navigation