Skip to main content
Log in

Links Between Gut Dysbiosis and Neurotransmitter Disturbance in Chronic Restraint Stress-Induced Depressive Behaviours: the Role of Inflammation

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Accumulating evidence has shown that inflammation, the gut microbiota, and neurotransmitters are closely associated with the pathophysiology of depression. However, the links between the gut microbiota and neurotransmitter metabolism remain poorly understood. The present study aimed to investigate the neuroinflammatory reactions in chronic restraint stress (CRS)-induced depression and to delineate the potential links between the gut microbiota and neurotransmitter metabolism. C57BL/6 mice were subjected to chronic restraint stress for 5 weeks, followed by behavioural tests (the sucrose preference test, forced swim test, open field test, and elevated plus maze) and analysis. The results showed that CRS significantly increased interleukin-1 beta (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), and tumour necrosis factor α (TNFα) levels and decreased brain-derived neurotrophic factor (BDNF) expression, accompanied by the activation of IkappaB-alpha-phosphorylation-nuclear factor kappa-B (IκBα-p-NF-κB) signalling in the mouse hippocampus. In addition, the neurotransmitter metabolomics results showed that CRS resulted in decreased levels of plasma 5-hydroxytryptamine (5-HT), dopamine (DA), and noradrenaline (NE) and their corresponding metabolites, and gut microbiota faecal metabolites with the 16S rRNA gene sequencing indicated that CRS caused marked microbiota dysbiosis in mice, with a significant increase in Helicobacter, Lactobacillus, and Oscillibacter and a decrease in Parabacteroides, Ruminococcus, and Prevotella. Notably, CRS-induced depressive behaviours and the disturbance of neurotransmitter metabolism and microbiota dysbiosis can be substantially restored by dexamethasone (DXMS) administration. Furthermore, a Pearson heatmap focusing on correlations between the microbiota, behaviours, and neurotransmitters showed that Helicobacter, Lactobacillus, and Oscillibacter were positively correlated with depressive behaviours but were negatively correlated with neurotransmitter metabolism, and Parabacteroides and Ruminococcus were negatively correlated with depressive behaviours but were positively correlated with neurotransmitter metabolism. Taken together, the results suggest that inflammation is involved in microbiota dysbiosis and the disturbance of neurotransmitter metabolism in CRS-induced depressive changes, and the delineation of the potential links between the microbiota and neurotransmitter metabolism will provide novel strategies for depression treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

DATA AVAILABILITY

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CRS:

Chronic restraint stress

PFC:

Prefrontal cortex

DXMS:

Dexamethasone

DA:

Dopamine

NE:

Norepinephrine

5-HT:

Serotonin

BDNF:

Brain-derived neurotrophic factor

SPT:

Sucrose preference test

OFT:

Open field test

EPM:

Elevated plus maze

FST:

Forced swim test

PrL:

Prelimbic cortex

5-HIAA:

5-Hydroxyindoleacetic acid

MHPG:

3-Methoxy-4-hydroxy-phenylglycol

3-MT:

3-Methoxytyramine

HVA:

Homovanillic acid

References

  1. Global Burden of Disease Study 2013 Collaborators. 2015. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 386 (9995): 743–800.

    Article  PubMed Central  Google Scholar 

  2. Gulbins, A., F. Schumacher, K.A. Becker, B. Wilker, M. Soddemann, F. Boldrin, et al. 2018. Antidepressants act by inducing autophagy controlled by sphingomyelin-ceramide. Molecular Psychiatry 23 (12): 2324–2346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kessler, R.C., P. Berglund, O. Demler, R. Jin, D. Koretz, K.R. Merikangas, et al. 2003. The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS-R). JAMA 289 (23): 3095–3105.

    Article  Google Scholar 

  4. Roiser, J.P., R. Elliott, and B.J. Sahakian. 2012. Cognitive mechanisms of treatment in depression. Neuropsychopharmacology 37 (1): 117–136.

    Article  CAS  PubMed  Google Scholar 

  5. Kenis, G., and M. Maes. 2002. Effects of antidepressants on the production of cytokines. International Journal of Neuropsychopharmacology 5 (4): 401–412.

    Article  CAS  Google Scholar 

  6. Miller, A.H., and C.L. Raison. 2016. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nature Reviews Immunology 16 (1): 22–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hashioka, S., P.L. McGeer, A. Monji, and S. Kanba. 2009. Anti-inflammatory effects of antidepressants: Possibilities for preventives against Alzheimer’s disease. Central Nervous System Agents in Medicinal Chemistry 9 (1): 12–19.

    Article  CAS  PubMed  Google Scholar 

  8. Goshen, I., T. Kreisel, O. Ben-Menachem-Zidon, T. Licht, J. Weidenfeld, T. Ben-Hur, et al. 2008. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Molecular Psychiatry 13 (7): 717–728.

    Article  CAS  PubMed  Google Scholar 

  9. Jiang, P., Y. Guo, R. Dang, M. Yang, D. Liao, H. Li, et al. 2017. Salvianolic acid B protects against lipopolysaccharide-induced behavioral deficits and neuroinflammatory response: Involvement of autophagy and NLRP3 inflammasome. Journal of Neuroinflammation 14 (1): 239.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ertenli, I., S. Ozer, S. Kiraz, S.B. Apras, A. Akdogan, O. Karadag, et al. 2012. Infliximab, a TNF-α antagonist treatment in patients with ankylosing spondylitis: The impact on depression, anxiety and quality of life level. Rheumatology International 32 (2): 323–330.

    Article  CAS  PubMed  Google Scholar 

  11. Lopresti, A.L., S.D. Hood, and P.D. Drummond. 2012. Multiple antidepressant potential modes of action of curcumin: A review of its anti-inflammatory, monoaminergic, antioxidant, immune-modulating and neuroprotective effects. Journal of Psychopharmacology. (Oxford) 26 (12): 1512–1524.

    Article  CAS  Google Scholar 

  12. Koo, J.W., S.J. Russo, D. Ferguson, E.J. Nestler, and R.S. Duman. 2010. Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proceedings of the National academy of Sciences of the United States of America 107 (6): 2669–2674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. O’Sullivan, J.B., K.M. Ryan, N.M. Curtin, A. Harkin, and T.J. Connor. 2009. Noradrenaline reuptake inhibitors limit neuroinflammation in rat cortex following a systemic inflammatory challenge: Implications for depression and neurodegeneration. International Journal of Neuropsychopharmacology 12 (5): 687–699.

    Article  CAS  Google Scholar 

  14. Martin, C.R., V. Osadchiy, A. Kalani, and E.A. Mayer. 2018. The brain-gut-microbiome axis. Cellular and Molecular Gastroenterology and Hepatology 6 (2): 133–148.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mayer, E.A., R. Knight, S.K. Mazmanian, J.F. Cryan, and K. Tillisch. 2014. Gut microbes and the brain: Paradigm shift in neuroscience. Journal of Neuroscience 34 (46): 15490–15496.

    Article  PubMed  Google Scholar 

  16. Aslam, H., J. Green, F.N. Jacka, F. Collier, M. Berk, J. Pasco, et al. 2018. Fermented foods, the gut and mental health: A mechanistic overview with implications for depression and anxiety. Nutrition Neuroscience 1–13.

  17. Luo, S., X. Kong, J.R. Wu, C.Y. Wang, Y. Tian, G. Zheng, et al. 2018. Neuroinflammation in acute hepatic encephalopathy rats: Imaging and therapeutic effectiveness evaluation using 11C-PK11195 and 18F-DPA-714 micro-positron emission tomography. Metabolic Brain Disease 33 (5): 1733–1742.

    Article  CAS  PubMed  Google Scholar 

  18. Luo, Y., B. Zeng, L. Zeng, X. Du, B. Li, R. Huo, et al. 2018. Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus. Translational Psychiatry 8 (1): 187.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jiang, H., Z. Ling, Y. Zhang, H. Mao, Z. Ma, Y. Yin, et al. 2015. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behavior & Immunity 48 (4): 186–194.

    Article  Google Scholar 

  20. Guida, F., F. Turco, M. Iannotta, D. De Gregorio, I. Palumbo, G. Sarnelli, et al. 2018. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain, Behavior, and Immunity 67: 230–245.

    Article  CAS  PubMed  Google Scholar 

  21. Li, N., Q. Wang, Y. Wang, A. Sun, Y. Lin, Y. Jin, et al. 2018. Oral probiotics ameliorate the behavioral deficits induced by chronic mild stress in mice via the gut microbiota-inflammation axis. Frontiers in Behavioral Neuroscience 12: 266.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dinan, T.G., and J.F. Cryan. 2016. Microbes, immunity and behaviour: Psychoneuroimmunology meets the microbiome. Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology 42 (1): 178.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Doherty, F.D., S.M. O’Mahony, V.L. Peterson, O. O’Sullivan, F. Crispie, P.D. Cotter, et al. 2017. Post-weaning social isolation of rats leads to long-term disruption of the gut microbiota-immune-brain axis. Brain Behavior & Immunity 68: S0889159117304804.

    Google Scholar 

  24. Wang, Q., M.A. Timberlake 2nd., K. Prall, and Y. Dwivedi. 2017. The recent progress in animal models of depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry 77: 99–109.

    Article  PubMed  Google Scholar 

  25. Bska, K.J.J., T. Litwin, I. Joniec, A. Ciesielska, A. Przybyłkowski, A. Członkowski, et al. 2004. Dexamethasone protects against dopaminergic neurons damage in a mouse model of Parkinson’s disease. International Immunopharmacology 4 (10): 1307–1318.

    Google Scholar 

  26. Cassol-Jr, O.J., C.M. Comim, F. Petronilho, L.S. Constantino, E.L. Streck, J. Quevedo, et al. 2010. Low dose dexamethasone reverses depressive-like parameters and memory impairment in rats submitted to sepsis. Neuroscience Letters 473 (2): 126–130.

    Article  Google Scholar 

  27. Khalid, A., B.S. Kim, B.A. Seo, S.T. Lee, K.H. Jung, K. Chu, et al. 2016. Gamma oscillation in functional brain networks is involved in the spontaneous remission of depressive behavior induced by chronic restraint stress in mice. BMC Neuroscience 17: 4.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang, L., L. Tang, Y. Feng, S. Zhao, M. Han, C. Zhang, G. Yuan, J. Zhu, S. Cao, Q. Wu, L. Li, and Z. Zhang. 2020. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8(+) T cells in mice. Gut 69 (11): 1988–1997.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, Y., E.A. Klomparens, S. Guo, and X. Geng. 2019. Neuroinflammation caused by mental stress: The effect of chronic restraint stress and acute repeated social defeat stress in mice. Neurological Research 41 (8): 762–769.

    Article  CAS  PubMed  Google Scholar 

  30. Guo, Y., J. Xie, X. Li, Y. Yuan, L. Zhang, W. Hu, et al. 2018. Antidepressant effects of rosemary extracts associate with anti-inflammatory effect and rebalance of gut microbiota. Frontiers in Pharmacology 9: 1126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zha, L., J. Chen, S. Sun, L. Mao, X. Chu, H. Deng, et al. 2014. Soyasaponins can blunt inflammation by inhibiting the reactive oxygen species-mediated activation of PI3K/Akt/NF-kB pathway. PLoS ONE 9 (9), e107655.

  32. Zhang, Q., M.J. Lenardo, and D. Baltimore. 2017. 30 years of NF-κB: A blossoming of relevance to human pathobiology. Cell 168 (1–2): 37–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu, G., and B.M. Sharp. 2012. Nicotine modulates multiple regions in the limbic stress network regulating activation of hypophysiotrophic neurons in hypothalamic paraventricular nucleus. Journal of Neurochemistry 122 (3): 628–640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mai, N.T., T.V. Tuan, M. Wolbers, D.M. Hoang, T.V. Nga, T.T. Chau, et al. 2009. Immunological and biochemical correlates of adjunctive dexamethasone in Vietnamese adults with bacterial meningitis. Clinical Infectious Diseases 49 (9): 1387–1392.

    Article  CAS  PubMed  Google Scholar 

  35. Meneses, G., G. Gevorkian, A. Florentino, M.A. Bautista, A. Espinosa, G. Acero, et al. 2017. Intranasal delivery of dexamethasone efficiently controls LPS-induced murine neuroinflammation. Clinical and Experimental Immunology 190 (3): 304–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vizuete, A., F. Hansen, E. Negri, M.C. Leite, D.L. de Oliveira, and C.A. Gonçalves. 2018. Effects of dexamethasone on the Li-pilocarpine model of epilepsy: Protection against hippocampal inflammation and astrogliosis. Journal of Neuroinflammation 15 (1): 68.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhao, Y., Q. Wang, M. Jia, S. Fu, J. Pan, C. Chu, et al. 2019. (+)-Sesamin attenuates chronic unpredictable mild stress-induced depressive-like behaviors and memory deficits via suppression of neuroinflammation. Journal of Nutritional Biochemistry 64: 61–71.

    Article  CAS  Google Scholar 

  38. Pesarico, A.P., G. Sartori, C.A. Brüning, A.C. Mantovani, T. Duarte, G. Zeni, et al. 2016. A novel isoquinoline compound abolishes chronic unpredictable mild stress-induced depressive-like behavior in mice. Behavioural Brain Research 307: 73–83.

    Article  CAS  PubMed  Google Scholar 

  39. Perez-Caballero, L., S. Torres-Sanchez, C. Romero-López-Alberca, F. González-Saiz, J.A. Mico, and E. Berrocoso. 2019. Monoaminergic system and depression. Cell and Tissue Research 377 (1): 107–113.

    Article  CAS  PubMed  Google Scholar 

  40. Guo, Y., J.P. Xie, K. Deng, X. Li, Y. Yuan, Q. Xuan, et al. 2019. Prophylactic effects of bifidobacterium adolescentis on anxiety and depression-like phenotypes after chronic stress: A role of the gut microbiota-inflammation axis. Frontiers in Behavioral Neuroscience 13: 126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, S.H., J.W. Lim, H. Kim, 2018. Astaxanthin inhibits mitochondrial dysfunction and interleukin-8 expression in helicobacter pylori-infected gastric epithelial cells. Nutrients 10 (9).

  42. McGee, D.J., X.H. Lu, and E.A. Disbrow. 2018. Stomaching the possibility of a pathogenic role for Helicobacter pylori in Parkinson’s disease. Journal of Parkinson’s Disease 8 (3): 367–374.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cheng, D., H. Chang, S. Ma, J. Guo, G. She, F. Zhang, et al. 2018. Tiansi liquid modulates gut microbiota composition and tryptophankynurenine metabolism in rats with hydrocortisone-induced depression. Molecules 23 (11).

  44. Miettinen, M., T.E. Pietilä, R.A. Kekkonen, M. Kankainen, S. Latvala, J. Pirhonen, et al. 2012. Nonpathogenic Lactobacillus rhamnosus activates the inflammasome and antiviral responses in human macrophages. Gut Microbes 3 (6): 510–522.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wong, M.L., A. Inserra, M.D. Lewis, C.A. Mastronardi, L. Leong, J. Choo, et al. 2016. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Molecular Psychiatry 21 (6): 797–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, K., M. Liao, N. Zhou, L. Bao, K. Ma, Z. Zheng, et al. 2019. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Reports 26 (1): 222-235.e5.

    Article  CAS  PubMed  Google Scholar 

  47. Gur, T.L., A.V. Palkar, T. Rajasekera, J. Allen, A. Niraula, J. Godbout, et al. 2019. Prenatal stress disrupts social behavior, cortical neurobiology and commensal microbes in adult male offspring. Behavioural Brain Research 359: 886–894.

    Article  PubMed  Google Scholar 

  48. Naseribafrouei, A., K. Hestad, E. Avershina, M. Sekelja, A. Linløkken, R. Wilson, et al. 2014. Correlation between the human fecal microbiota and depression. Neurogastroenterology & Motility the Official Journal of the European Gastrointestinal Motility Society 26 (8): 1155–1162.

    Article  CAS  Google Scholar 

  49. Wąsik, A., E. Możdżeń, I. Romańska, J. Michaluk, and L. Antkiewicz-Michaluk. 2013. Antidepressant-like activity of the endogenous amine, 1-methyl-1,2,3,4-tetrahydroisoquinoline in the behavioral despair test in the rat, and its neurochemical correlates: A comparison with the classical antidepressant, imipramine. European Journal of Pharmacology 700 (1–3): 110–117.

    Article  PubMed  Google Scholar 

  50. Bruce-Keller, A., J.M. Salbaum, and H.R. Berthoud. 2017. Harnessing gut microbes for mental health: Getting from here to there. Biological Psychiatry 83 (3): S0006322317319029.

    Google Scholar 

Download references

Funding

This work was supported by the Nanjing Science and Technology Bureau (201715024) and Key Project supported by Medical Science and technology development Foundation, Nanjing Department of Health (YKK16072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Zhang or Lei Jiang.

Ethics declarations

Ethics Approval

Animals were treated in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory, and all procedures were approved by the animal ethical and welfare committee of Nanjing Medical University (NJMU).

Consent for Publication.

Approved by all authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2214 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Hl., Li, MM., Zhou, MF. et al. Links Between Gut Dysbiosis and Neurotransmitter Disturbance in Chronic Restraint Stress-Induced Depressive Behaviours: the Role of Inflammation. Inflammation 44, 2448–2462 (2021). https://doi.org/10.1007/s10753-021-01514-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01514-y

KEY WORDS

Navigation