Skip to main content

Advertisement

Log in

Short-Term Cohousing of Sick with Healthy or Treated Mice Alleviates the Inflammatory Response and Liver Damage

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Cohousing of sick with healthy or treated animals is based on the concept of sharing an intestinal ecosystem and coprophagy, the consumption of feces, which includes sharing of the microbiome and of active drug metabolites secreted in the feces or urine. To develop a model for short-term cohousing, enabling the study of the effect of sharing an ecosystem on inflammatory states. To determine the impact of cohousing of sick and healthy mice on the immune-mediated disorders, mice injected with concanavalin A (ConA) were cohoused with healthy or sick mice or with steroid-treated or untreated mice. To determine the effect of cohousing on acetaminophen (APAP)-induced liver damage, APAP-injected mice were cohoused with N-acetyl-cysteine (NAC)-treated or untreated mice. In the ConA-induced immune-mediated hepatitis model, cohousing of sick with healthy mice was associated with the alleviation of liver damage in sick animals. Similarly, a significant decrease in serum ALT was noted in ConA-injected mice kept in the same cage as ConA-injected mice treated with steroids. A trend for reduction in liver enzymes in APAP-injected mice was observed upon cohousing with NAC-treated animals. Cohousing of sick mice with healthy or treated mice ameliorated the immune-mediated inflammatory state induced by ConA and APAP. These models for liver damage can serve as biological systems for determining the effects of alterations in the ecosystem on the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ConA:

Concanavalin A

NAC:

N-Acetyl-cysteine

APAP:

Acetaminophen

IBD:

Inflammatory bowel disease

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor-alpha

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

NLRP:

Nod-like receptor protein

IFNAR1:

Type I interferon receptor

TMF/ARA160:

TATA element modulatory factor

References

  1. Walker, M., C. Fureix, R. Palme, and G. Mason. 2013. Co-housing rodents with different coat colours as a simple, non-invasive means of individual identification: Validating mixed-strain housing for C57BL/6 and DBA/2 mice. PLoS One 8: e77541.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Stecher, B., S. Chaffron, R. Kappeli, et al. 2010. Like will to like: Abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathogens 6: e1000711.

    PubMed  PubMed Central  Google Scholar 

  3. Shanmugam, N.K., E. Trebicka, L.L. Fu, et al. 2014. Intestinal inflammation modulates expression of the iron-regulating hormone Hepcidin depending on erythropoietic activity and the commensal microbiota. Journal of Immunology 193: 1398–1407.

    CAS  Google Scholar 

  4. Ilan, Y. 2012. Leaky gut and the liver: A role for bacterial translocation in nonalcoholic steatohepatitis. World Journal of Gastroenterology 18: 2609–2618.

    PubMed  PubMed Central  Google Scholar 

  5. Ilan, Y. 2016. Review article: Novel methods for the treatment of non-alcoholic steatohepatitis - targeting the gut immune system to decrease the systemic inflammatory response without immune suppression. Alimentary Pharmacology & Therapeutics 44: 1168–1182.

    CAS  Google Scholar 

  6. Ilan, Y. 2016. Oral immune therapy: Targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease. Clinical & Translational Immunology 5: e60.

    Google Scholar 

  7. Ben Ya’acov, A., Y. Lichtenstein, L. Zolotarov, et al. 2015. The gut microbiome as a target for regulatory T cell-based immunotherapy: Induction of regulatory lymphocytes by oral administration of anti-LPS enriched colostrum alleviates immune mediated colitis. BMC Gastroenterology 15: 154.

    PubMed  Google Scholar 

  8. Ridaura, V.K., J.J. Faith, F.E. Rey, J. Cheng, A.E. Duncan, A.L. Kau, N.W. Griffin, V. Lombard, B. Henrissat, J.R. Bain, M.J. Muehlbauer, O. Ilkayeva, C.F. Semenkovich, K. Funai, D.K. Hayashi, B.J. Lyle, M.C. Martini, L.K. Ursell, J.C. Clemente, W. van Treuren, W.A. Walters, R. Knight, C.B. Newgard, A.C. Heath, and J.I. Gordon. 2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341: 1241214.

    PubMed  Google Scholar 

  9. Ji, Y., S. Sun, J.K. Goodrich, H. Kim, A.C. Poole, G.E. Duhamel, R.E. Ley, and L. Qi. 2014. Diet-induced alterations in gut microflora contribute to lethal pulmonary damage in TLR2/TLR4-deficient mice. Cell Reports 8: 137–149.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Peloquin, J.M., and D.D. Nguyen. 2013. The microbiota and inflammatory bowel disease: Insights from animal models. Anaerobe 24: 102–106.

    PubMed  CAS  Google Scholar 

  11. Henao-Mejia, J., E. Elinav, C. Jin, L. Hao, W.Z. Mehal, T. Strowig, C.A. Thaiss, A.L. Kau, S.C. Eisenbarth, M.J. Jurczak, J.P. Camporez, G.I. Shulman, J.I. Gordon, H.M. Hoffman, and R.A. Flavell. 2012. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482: 179–185.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Tiegs, G. 2007. Cellular and cytokine-mediated mechanisms of inflammation and its modulation in immune-mediated liver injury. Zeitschrift für Gastroenterologie 45: 63–70.

    PubMed  CAS  Google Scholar 

  13. Erhardt, A., M. Biburger, T. Papadopoulos, and G. Tiegs. 2007. IL-10, regulatory T cells, and Kupffer cells mediate tolerance in concanavalin A-induced liver injury in mice. Hepatology 45: 475–485.

    PubMed  CAS  Google Scholar 

  14. Margalit, M., S.A. Ghazala, R. Alper, E. Elinav, A. Klein, V. Doviner, Y. Sherman, B. Thalenfeld, D. Engelhardt, E. Rabbani, and Y. Ilan. 2005. Glucocerebroside treatment ameliorates ConA hepatitis by inhibition of NKT lymphocytes. American Journal of Physiology. Gastrointestinal and Liver Physiology 289: G917–G925.

    PubMed  CAS  Google Scholar 

  15. Jaeschke, H. 2005. Role of inflammation in the mechanism of acetaminophen-induced hepatotoxicity. Expert Opinion on Drug Metabolism & Toxicology 1: 389–397.

    CAS  Google Scholar 

  16. Chun, L.J., M.J. Tong, R.W. Busuttil, and J.R. Hiatt. 2009. Acetaminophen hepatotoxicity and acute liver failure. Journal of Clinical Gastroenterology 43: 342–349.

    PubMed  CAS  Google Scholar 

  17. Dodd, S., O. Dean, D.L. Copolov, G.S. Malhi, and M. Berk. 2008. N-acetylcysteine for antioxidant therapy: Pharmacology and clinical utility. Expert Opinion on Biological Therapy 8: 1955–1962.

    PubMed  CAS  Google Scholar 

  18. Dong, Z., H. Wei, R. Sun, and Z. Tian. 2007. The roles of innate immune cells in liver injury and regeneration. Cellular & Molecular Immunology 4: 241–252.

    CAS  Google Scholar 

  19. Liu, Z.X., and N. Kaplowitz. 2006. Role of innate immunity in acetaminophen-induced hepatotoxicity. Expert Opinion on Drug Metabolism & Toxicology 2: 493–503.

    CAS  Google Scholar 

  20. Prandota, J. 2005. Important role of proinflammatory cytokines/other endogenous substances in drug-induced hepatotoxicity: Depression of drug metabolism during infections/inflammation states, and genetic polymorphisms of drug-metabolizing enzymes/cytokines may markedly contribute to this pathology. American Journal of Therapeutics 12: 254–261.

    PubMed  Google Scholar 

  21. Khoury, T., A. Ben Ya’acov, Y. Shabat, et al. 2015. Altered distribution of regulatory lymphocytes by oral administration of soy-extracts exerts a hepatoprotective effect alleviating immune mediated liver injury, non-alcoholic steatohepatitis and insulin resistance. World Journal of Gastroenterology 21: 7443–7456.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Ben Ya’acov, A., G. Lalazar, D.M. Livovsky, et al. 2009. Decreased STAT-1 phosphorylation by a thio analogue of beta-D-glucosylceramide is associated with altered NKT lymphocyte polarization. Molecular Immunology 47: 526–533.

    PubMed  Google Scholar 

  23. Lalazar, G., A. Ben Ya’acov, A. Lador, et al. 2008. Modulation of intracellular machinery by beta-glycolipids is associated with alteration of NKT lipid rafts and amelioration of concanavalin-induced hepatitis. Molecular Immunology 45: 3517–3525.

    PubMed  CAS  Google Scholar 

  24. Groen, A., C. Kunne, and R.P. Oude Elferink. 2006. Increased serum concentrations of secondary bile salts during cholate feeding are due to coprophagy. A study with wild-type and Atp8b1-deficient mice. Molecular Pharmaceutics 3: 756–761.

    PubMed  CAS  Google Scholar 

  25. Lassi, K.C., and J.R. Prohaska. 2012. Erythrocyte copper chaperone for superoxide dismutase is increased following marginal copper deficiency in adult and postweanling mice. The Journal of Nutrition 142: 292–297.

    PubMed  CAS  Google Scholar 

  26. Safar, J.G., P. Lessard, G. Tamguney, et al. 2008. Transmission and detection of prions in feces. The Journal of Infectious Diseases 198: 81–89.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Duysen, E.G., D.L. Fry, and O. Lockridge. 2002. Early weaning and culling eradicated Helicobacter hepaticus from an acetylcholinesterase knockout 129S6/SvEvTac mouse colony. Comparative Medicine 52: 461–466.

    PubMed  CAS  Google Scholar 

  28. Dimitriu, P.A., G. Boyce, A. Samarakoon, M. Hartmann, P. Johnson, and W.W. Mohn. 2013. Temporal stability of the mouse gut microbiota in relation to innate and adaptive immunity. Environmental Microbiology Reports 5: 200–210.

    PubMed  CAS  Google Scholar 

  29. Hansen, C.H., D.S. Nielsen, M. Kverka, et al. 2012. Patterns of early gut colonization shape future immune responses of the host. PLoS One 7: e34043.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Wine, E. 2014. Should we be treating the bugs instead of cytokines and T cells? Digestive Diseases 32: 403–409.

    PubMed  Google Scholar 

  31. Shanahan, M.T., I.M. Carroll, E. Grossniklaus, A. White, R.J. von Furstenberg, R. Barner, A.A. Fodor, S.J. Henning, R.B. Sartor, and A.S. Gulati. 2014. Mouse Paneth cell antimicrobial function is independent of Nod2. Gut 63: 903–910.

    PubMed  CAS  Google Scholar 

  32. Elinav, E., T. Strowig, A.L. Kau, J. Henao-Mejia, C.A. Thaiss, C.J. Booth, D.R. Peaper, J. Bertin, S.C. Eisenbarth, J.I. Gordon, and R.A. Flavell. 2011. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145: 745–757.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Bauer, C., P. Duewell, H.A. Lehr, S. Endres, and M. Schnurr. 2012. Protective and aggravating effects of Nlrp3 inflammasome activation in IBD models: Influence of genetic and environmental factors. Digestive Diseases 30 (Suppl 1): 82–90.

    PubMed  Google Scholar 

  34. Tschurtschenthaler, M., J. Wang, C. Fricke, T.M.J. Fritz, L. Niederreiter, T.E. Adolph, E. Sarcevic, S. Künzel, F.A. Offner, U. Kalinke, J.F. Baines, H. Tilg, and A. Kaser. 2014. Type I interferon signalling in the intestinal epithelium affects Paneth cells, microbial ecology and epithelial regeneration. Gut 63: 1921–1931.

    PubMed  CAS  Google Scholar 

  35. Bel, S., Y. Elkis, H. Elifantz, O. Koren, R. Ben-Hamo, T. Lerer-Goldshtein, R. Rahimi, S. Ben Horin, A. Nyska, S. Shpungin, and U. Nir. 2014. Reprogrammed and transmissible intestinal microbiota confer diminished susceptibility to induced colitis in TMF-/- mice. Proceedings of the National Academy of Sciences of the United States of America 111: 4964–4969.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Brinkman, B.M., A. Becker, R.B. Ayiseh, F. Hildebrand, J. Raes, G. Huys, and P. Vandenabeele. 2013. Gut microbiota affects sensitivity to acute DSS-induced colitis independently of host genotype. Inflammatory Bowel Diseases 19: 2560–2567.

    PubMed  Google Scholar 

  37. van Nood, E., P. Speelman, M. Nieuwdorp, and J. Keller. 2014. Fecal microbiota transplantation: Facts and controversies. Current Opinion in Gastroenterology 30: 34–39.

    PubMed  Google Scholar 

  38. Li, Y.T., H.F. Cai, Z.H. Wang, J. Xu, and J.Y. Fang. 2016. Systematic review with meta-analysis: Long-term outcomes of faecal microbiota transplantation for Clostridium difficile infection. Alimentary Pharmacology & Therapeutics 43: 445–457.

    Google Scholar 

  39. Bagdasarian, N., K. Rao, and P.N. Malani. 2015. Diagnosis and treatment of Clostridium difficile in adults: A systematic review. JAMA 313: 398–408.

    PubMed  PubMed Central  Google Scholar 

  40. Shanahan, F., and E.M. Quigley. 2014. Manipulation of the microbiota for treatment of IBS and IBD-challenges and controversies. Gastroenterology 146: 1554–1563.

    PubMed  Google Scholar 

  41. Kerman, D.H. 2016. Endoscopic delivery of fecal biotherapy in inflammatory bowel disease. Gastrointestinal Endoscopy Clinics of North America 26: 707–717.

    PubMed  Google Scholar 

  42. Pigneur, B., and H. Sokol. 2016. Fecal microbiota transplantation in inflammatory bowel disease: The quest for the holy grail. Mucosal Immunology 9: 1360–1365.

    PubMed  CAS  Google Scholar 

  43. Distrutti, E., L. Monaldi, P. Ricci, and S. Fiorucci. 2016. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World Journal of Gastroenterology 22: 2219–2241.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Clavel, T., C. Desmarchelier, D. Haller, P. Gérard, S. Rohn, P. Lepage, and H. Daniel. 2014. Intestinal microbiota in metabolic diseases: From bacterial community structure and functions to species of pathophysiological relevance. Gut Microbes 5: 544–551.

    PubMed  Google Scholar 

  45. Stocco, A., C.S. Prat, D.M. Losey, J.A. Cronin, J. Wu, J.A. Abernethy, and R.P.N. Rao. 2015. Playing 20 questions with the mind: Collaborative problem solving by humans using a brain-to-brain interface. PLoS One 10: e0137303.

    PubMed  PubMed Central  Google Scholar 

  46. Ilan, Y. 2019. Why targeting the microbiome is not so successful: Can randomness overcome the adaptation that occurs following gut manipulation? Clinical and Experimental Gastroenterology 12: 209–217.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported in part by The Roman-Epstein Liver Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaron Ilan.

Ethics declarations

Animal experiments were carried out according to the guidelines of the Hebrew University-Hadassah Institutional Committee for the Care and Use of Laboratory Animals. The joint ethics committee (IACUC) of Hebrew University and Hadassah Medical Center approved the study protocol for animal welfare. Hebrew University is an Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC)-accredited institute.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabat, Y., Lichtenstein, Y. & Ilan, Y. Short-Term Cohousing of Sick with Healthy or Treated Mice Alleviates the Inflammatory Response and Liver Damage. Inflammation 44, 518–525 (2021). https://doi.org/10.1007/s10753-020-01348-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01348-0

KEY WORDS

Navigation