Skip to main content

Advertisement

Log in

Electronegative LDL Induces M1 Polarization of Human Macrophages Through a LOX-1-Dependent Pathway

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

In response to environmental stimuli, monocytes undergo polarization into classically activated (M1) or alternatively activated (M2) states. M1 and M2 macrophages exert opposing pro- and anti-inflammatory properties, respectively. Electronegative low-density lipoprotein (LDL) (LDL(−)) is a naturally occurring mildly oxidized LDL found in the plasma of patients with hypercholesterolemia, diabetes, and acute myocardial infarction, and has been shown to involve in the pathogenesis of atherosclerosis. In this study, we examined the effects of LDL(−) on macrophage polarization and the involvement of lectin-like oxidized LDL receptor-1 (LOX-1) in this process. THP-1 macrophages were treated with native LDL (nLDL) or LDL(−), and then the expression of M1/M2-related surface markers and cytokines were evaluated. The results show that treatment with LDL(−) resulted in profound increase in proinflammatory cytokines, IL-1β, IL-6, and TNF-α, and M1-surface marker CD86; however, M2-related cytokines, IL-10 and TGF-β, and M2-surface marker CD206 were not changed by LDL(−). Untreated or nLDL-treated cells were used as control. LDL(−)-induced M1 polarization and secretion of proinflammatory cytokines were diminished in LOX-1 knockdown cells. Taken together, the results show that LDL(−) promotes differentiation of human monocytes to M1 macrophages through a LOX-1-dependent pathway, and explore the contribution of LDL(−) and LOX-1 to the development of chronic inflammation in atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Arg-1:

Arginase-1

IL:

Interleukin

KD:

Knockdown

LDL:

Low-density lipoprotein

LDL(-):

Electronegative LDL

LOX-1:

Lectin-like oxidized LDL receptor-1

nLDL:

Native LDL

NLRP3:

NOD-, LRR-, and pyrin domain-containing protein 3

NF:

Nuclear factor

oxLDL:

Oxidized low-density lipoprotein

SR:

Scavenger receptors

STEMI:

ST-segment elevation myocardial infarction

TGF:

Transforming growth factor

TNF:

tumor necrosis factor

References

  1. Glass, C.K., and J.L. Witztum. 2001. Atherosclerosis. The road ahead. Cell 104: 503–516.

    Article  CAS  Google Scholar 

  2. Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: Mechanism and functions. Immunity 32: 593–604.

    Article  CAS  Google Scholar 

  3. Liu, Y.C., X.B. Zou, Y.F. Chai, and Y.M. Yao. 2014. Macrophage polarization in inflammatory diseases. International Journal of Biological Sciences 10: 520–529.

    Article  Google Scholar 

  4. Sanchez-Quesada, J.L., S. Benitez, C. Otal, M. Franco, F. Blanco-Vaca, and J. Ordonez-Llanos. 2002. Density distribution of electronegative LDL in normolipemic and hyperlipemic subjects. Journal of Lipid Research 43: 699–705.

    CAS  PubMed  Google Scholar 

  5. Chan, H.C., L.Y. Ke, C.S. Chu, A.S. Lee, M.Y. Shen, M.A. Cruz, J.F. Hsu, et al. 2013. Highly electronegative LDL from patients with ST-elevation myocardial infarction triggers platelet activation and aggregation. Blood 122: 3632–3641.

    Article  CAS  Google Scholar 

  6. Lu, J., W. Jiang, J.H. Yang, P.Y. Chang, J.P. Walterscheid, H.H. Chen, M. Marcelli, D. Tang, Y.T. Lee, W.S. Liao, C.Y. Yang, and C.H. Chen. 2008. Electronegative LDL impairs vascular endothelial cell integrity in diabetes by disrupting fibroblast growth factor 2 (FGF2) autoregulation. Diabetes 57: 158–166.

    Article  CAS  Google Scholar 

  7. Chang, P.Y., Y.J. Chen, F.H. Chang, J. Lu, W.H. Huang, T.C. Yang, Y.T. Lee, et al. 2013. Aspirin protects human coronary artery endothelial cells against atherogenic electronegative LDL via an epigenetic mechanism: A novel cytoprotective role of aspirin in acute myocardial infarction. Cardiovascular Research 99: 137–145.

    Article  CAS  Google Scholar 

  8. Chang, P.Y., S. Luo, T. Jiang, Y.T. Lee, S.C. Lu, P.D. Henry, and C.H. Chen. 2001. Oxidized low-density lipoprotein downregulates endothelial basic fibroblast growth factor through a pertussis toxin-sensitive G-protein pathway: Mediator role of platelet-activating factor-like phospholipids. Circulation 104: 588–593.

    Article  CAS  Google Scholar 

  9. Yang, T.C., P.Y. Chang, and S.C. Lu. 2017. L5-LDL from ST-elevation myocardial infarction patients induces IL-1beta production via LOX-1 and NLRP3 inflammasome activation in macrophages. American Journal of Physiology. Heart and Circulatory Physiology 312: H265–H274.

    Article  Google Scholar 

  10. Lai, Y.S., T.C. Yang, P.Y. Chang, S.F. Chang, S.L. Ho, H.L. Chen, and S.C. Lu. 2016. Electronegative LDL is linked to high-fat, high-cholesterol diet-induced nonalcoholic steatohepatitis in hamsters. The Journal of Nutritional Biochemistry 30: 44–52.

    Article  CAS  Google Scholar 

  11. Chang, P.Y., J.H. Pai, Y.S. Lai, and S.C. Lu. 2019. Electronegative LDL from rabbits fed with atherogenic diet is highly proinflammatory. Mediators of Inflammation 2019: 6163130.

    PubMed  PubMed Central  Google Scholar 

  12. Hofnagel, O., B. Luechtenborg, K. Stolle, S. Lorkowski, H. Eschert, G. Plenz, and H. Robenek. 2004. Proinflammatory cytokines regulate LOX-1 expression in vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology 24: 1789–1795.

    Article  CAS  Google Scholar 

  13. Yang, T.C., P.Y. Chang, T.L. Kuo, and S.C. Lu. 2017. Electronegative L5-LDL induces the production of G-CSF and GM-CSF in human macrophages through LOX-1 involving NF-kappaB and ERK2 activation. Atherosclerosis 267: 1–9.

    Article  CAS  Google Scholar 

  14. Mehta, J.L., N. Sanada, C.P. Hu, J. Chen, A. Dandapat, F. Sugawara, H. Satoh, et al. 2007. 3 Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circulation Research 100: 1634–1642.

    Article  CAS  Google Scholar 

  15. Lu, J., J.H. Yang, A.R. Burns, H.H. Chen, D. Tang, J.P. Walterscheid, S. Suzuki, C.Y. Yang, T. Sawamura, and C.H. Chen. 2009. Mediation of electronegative low-density lipoprotein signaling by LOX-1: A possible mechanism of endothelial apoptosis. Circulation Research 104: 619–627.

    Article  CAS  Google Scholar 

  16. Levitan, I., S. Volkov, and P.V. Subbaiah. 2010. Oxidized LDL: Diversity, patterns of recognition, and pathophysiology. Antioxidants & Redox Signaling 13: 39–75.

    Article  CAS  Google Scholar 

  17. Rios, F.J., M.M. Koga, M. Pecenin, M. Ferracini, M. Gidlund, and S. Jancar. 2013. Oxidized LDL induces alternative macrophage phenotype through activation of CD36 and PAFR. Mediators of Inflammation 2013: 198193.

    Article  Google Scholar 

  18. Seo, J.W., E.J. Yang, K.H. Yoo, and I.H. Choi. 2015. Macrophage differentiation from monocytes is influenced by the lipid oxidation degree of low density lipoprotein. Mediators of Inflammation 2015: 235797.

    Article  Google Scholar 

  19. van Tits, L.J., R. Stienstra, P.L. van Lent, M.G. Netea, L.A. Joosten, and A.F. Stalenhoef. 2011. Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: A crucial role for Kruppel-like factor 2. Atherosclerosis 214: 345–349.

    Article  Google Scholar 

  20. Oh, J., A.E. Riek, S. Weng, M. Petty, D. Kim, M. Colonna, M. Cella, et al. 2012. Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation. The Journal of Biological Chemistry 287: 11629–11641.

    Article  CAS  Google Scholar 

  21. Yang, C.Y., J.L. Raya, H.H. Chen, C.H. Chen, Y. Abe, H.J. Pownall, A.A. Taylor, et al. 2003. Isolation, characterization, and functional assessment of oxidatively modified subfractions of circulating low-density lipoproteins. Arteriosclerosis, Thrombosis, and Vascular Biology 23: 1083–1090.

    Article  CAS  Google Scholar 

  22. Chen, C.Y., H.C. Hsu, A.S. Lee, D. Tang, L.P. Chow, C.Y. Yang, H. Chen, et al. 2012. The most negatively charged low-density lipoprotein L5 induces stress pathways in vascular endothelial cells. Journal of Vascular Research 49: 329–341.

    Article  CAS  Google Scholar 

  23. Benitez, S., C. Bancells, J. Ordonez-Llanos, and J.L. Sanchez-Quesada. 2007. Pro-inflammatory action of LDL(−) on mononuclear cells is counteracted by increased IL10 production. Biochimica et Biophysica Acta 1771: 613–622.

    Article  CAS  Google Scholar 

  24. Shapouri-Moghaddam, A., S. Mohammadian, H. Vazini, M. Taghadosi, S.A. Esmaeili, F. Mardani, B. Seifi, et al. 2018. Macrophage plasticity, polarization, and function in health and disease. Journal of Cellular Physiology 233: 6425–6440.

    Article  CAS  Google Scholar 

  25. Moore, K.J., and M.W. Freeman. 2006. Scavenger receptors in atherosclerosis: Beyond lipid uptake. Arteriosclerosis, Thrombosis, and Vascular Biology 26: 1702–1711.

    Article  CAS  Google Scholar 

  26. Canton, J., D. Neculai, and S. Grinstein. 2013. Scavenger receptors in homeostasis and immunity. Nature Reviews. Immunology 13: 621–634.

    Article  CAS  Google Scholar 

  27. Aoyama, T., T. Sawamura, Y. Furutani, R. Matsuoka, M.C. Yoshida, H. Fujiwara, and T. Masaki. 1999. Structure and chromosomal assignment of the human lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) gene. The Biochemical Journal 339 (Pt 1): 177–184.

    Article  CAS  Google Scholar 

  28. Sobanov, Y., A. Bernreiter, S. Derdak, D. Mechtcheriakova, B. Schweighofer, M. Duchler, F. Kalthoff, et al. 2001. A novel cluster of lectin-like receptor genes expressed in monocytic, dendritic and endothelial cells maps close to the NK receptor genes in the human NK gene complex. European Journal of Immunology 31: 3493–3503.

    Article  CAS  Google Scholar 

  29. Kakutani, M., M. Ueda, T. Naruko, T. Masaki, and T. Sawamura. 2001. Accumulation of LOX-1 ligand in plasma and atherosclerotic lesions of Watanabe heritable hyperlipidemic rabbits: Identification by a novel enzyme immunoassay. Biochemical and Biophysical Research Communications 282: 180–185.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Technology of Taiwan grant MOST 103-2320-B-002-029-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Chun Lu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, SF., Chang, PY., Chou, YC. et al. Electronegative LDL Induces M1 Polarization of Human Macrophages Through a LOX-1-Dependent Pathway. Inflammation 43, 1524–1535 (2020). https://doi.org/10.1007/s10753-020-01229-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01229-6

KEY WORDS

Navigation