Skip to main content
Log in

Interleukin-1β Induces Intracellular Serum Amyloid A1 Expression in Human Coronary Artery Endothelial Cells and Promotes its Intercellular Exchange

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Serum amyloid A (SAA) is an acute-phase protein with important, pathogenic role in the development of atherosclerosis. Since dysfunctional endothelium represents a key early step in atherogenesis, we aimed to determine whether induced human coronary artery endothelial cells (HCAEC) modulate SAA1/2/4 expression and influence intracellular location and intercellular transport of SAA1. HCAEC were stimulated with 1 ng/ml IL-1β, 10 ng/ml IL-6, and/or 1 μM dexamethasone for 24 h. QPCR, Western blots, ELISA, and immunofluorescent labeling were performed for detection of SAA1/2/4 mRNA and protein levels, respectively. In SAA1 transport experiments, FITC- or Cy3-labeled SAA1 were added to HCAEC separately, for 24 h, followed by a combined incubation of SAA1-FITC and SAA1-Cy3 positive cells, with IL-1β and analysis by flow cytometry. IL-1β upregulated SAA1 (119.9-fold, p < 0.01) and SAA2 (9.3-fold; p < 0.05) mRNA expression levels, while mRNA expression of SAA4 was not affected. Intracellular SAA1 was found mainly as a monomer, while SAA2 and SAA4 formed octamers as analyzed by Western blots. Within HCAEC, SAA1/2/4 located mostly to the perinuclear area and tunneling membrane nanotubes. Co-culturing of SAA1-FITC and SAA1-Cy3 positive cells for 48 h showed a significantly higher percentage of double positive cells in IL-1β-stimulated (mean ± SD; 60 ± 4%) vs. non-stimulated cells (48 ± 2%; p < 0.05). IL-1β induces SAA1 expression in HCAEC and promotes its intercellular exchange, suggesting that direct communication between cells in inflammatory conditions could ultimately lead to faster development of atherosclerosis in coronary arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alexander, R.W. 1994. Inflammation and coronary artery disease. The New England Journal of Medicine 331 (7): 468–469. https://doi.org/10.1056/NEJM199408183310709.

    Article  CAS  PubMed  Google Scholar 

  2. Ross, R. 1999. Atherosclerosis—an inflammatory disease. The New England Journal of Medicine 340 (2): 115–126. https://doi.org/10.1056/NEJM199901143400207.

    Article  CAS  PubMed  Google Scholar 

  3. Ridker, P.M., B.M. Everett, T. Thuren, J.G. MacFadyen, W.H. Chang, C. Ballantyne, et al. 2017. Antiinflammatory therapy with canakinumab for atherosclerotic disease. The New England Journal of Medicine 377 (12): 1119–1131. https://doi.org/10.1056/NEJMoa1707914.

    Article  CAS  PubMed  Google Scholar 

  4. Harrington, R.A. 2017. Targeting inflammation in coronary artery disease. The New England Journal of Medicine 377 (12): 1197–1198. https://doi.org/10.1056/NEJMe1709904.

    Article  PubMed  Google Scholar 

  5. Gabay, C., and I. Kushner. 1999. Acute-phase proteins and other systemic responses to inflammation. The New England Journal of Medicine 340 (6): 448–454. https://doi.org/10.1056/NEJM199902113400607.

    Article  CAS  PubMed  Google Scholar 

  6. Mezaki, T., T. Matsubara, T. Hori, K. Higuchi, A. Nakamura, I. Nakagawa, S. Imai, K. Ozaki, K. Tsuchida, A. Nasuno, T. Tanaka, K. Kubota, M. Nakano, T. Miida, and Y. Aizawa. 2003. Plasma levels of soluble thrombomodulin, C-reactive protein, and serum amyloid A protein in the atherosclerotic coronary circulation. Japanese Heart Journal 44 (5): 601–612.

    Article  CAS  Google Scholar 

  7. Thompson, J.C., C. Jayne, J. Thompson, P.G. Wilson, M.H. Yoder, N. Webb, and L.R. Tannock. 2015. A brief elevation of serum amyloid A is sufficient to increase atherosclerosis. Journal of Lipid Research 56 (2): 286–293. https://doi.org/10.1194/jlr.M054015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Johnson, B.D., K.E. Kip, O.C. Marroquin, P.M. Ridker, S.F. Kelsey, L.J. Shaw, C.J. Pepine, B. Sharaf, C.N. Bairey Merz, G. Sopko, M.B. Olson, S.E. Reis, and National Heart, Lung, and Blood Institute. 2004. Serum amyloid A as a predictor of coronary artery disease and cardiovascular outcome in women: The National Heart, Lung, and Blood Institute-sponsored Women’s Ischemia Syndrome Evaluation (WISE). Circulation 109 (6): 726–732. https://doi.org/10.1161/01.CIR.0000115516.54550.B1.

    Article  CAS  PubMed  Google Scholar 

  9. Katayama, T., H. Nakashima, C. Takagi, Y. Honda, S. Suzuki, Y. Iwasaki, and K. Yano. 2005. Prognostic value of serum amyloid A protein in patients with acute myocardial infarction. Circulation Journal 69 (10): 1186–1191.

    Article  CAS  Google Scholar 

  10. Dong, Z., T. Wu, W. Qin, C. An, Z. Wang, M. Zhang, et al. 2011. Serum amyloid A directly accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Molecular Medicine 17 (11–12): 1357–1364. https://doi.org/10.2119/molmed.2011.00186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sack, G.H., Jr. 2018. Serum amyloid A—a review. Molecular Medicine 24 (1): 46. https://doi.org/10.1186/s10020-018-0047-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Uhlar, C.M., C.J. Burgess, P.M. Sharp, and A.S. Whitehead. 1994. Evolution of the serum amyloid A (SAA) protein superfamily. Genomics 19 (2): 228–235. https://doi.org/10.1006/geno.1994.1052.

    Article  CAS  PubMed  Google Scholar 

  13. Sellar, G.C., S.A. Jordan, W.A. Bickmore, J.A. Fantes, V. van Heyningen, and A.S. Whitehead. 1994. The human serum amyloid A protein (SAA) superfamily gene cluster: mapping to chromosome 11p15.1 by physical and genetic linkage analysis. Genomics 19 (2): 221–227. https://doi.org/10.1006/geno.1994.1051.

    Article  CAS  PubMed  Google Scholar 

  14. Kluve-Beckerman, B., S.L. Naylor, A. Marshall, J.C. Gardner, T.B. Shows, and M.D. Benson. 1986. Localization of human SAA gene(s) to chromosome 11 and detection of DNA polymorphisms. Biochemical and Biophysical Research Communications 137 (3): 1196–1204.

    Article  CAS  Google Scholar 

  15. Steel, D.M., and A.S. Whitehead. 1994. The major acute phase reactants: C-reactive protein, serum amyloid P component and serum amyloid A protein. Immunology Today 15 (2): 81–88. https://doi.org/10.1016/0167-5699(94)90138-4.

    Article  CAS  PubMed  Google Scholar 

  16. Xu, Y., T. Yamada, T. Satoh, and Y. Okuda. 2006. Measurement of serum amyloid A1 (SAA1), a major isotype of acute phase SAA. Clinical Chemistry and Laboratory Medicine 44 (1): 59–63. https://doi.org/10.1515/CCLM.2006.012.

  17. Jensen, L.E., and A.S. Whitehead. 1998. Regulation of serum amyloid A protein expression during the acute-phase response. The Biochemical Journal 334 (Pt 3):489–503.

  18. Betts, J.C., J.K. Cheshire, S. Akira, T. Kishimoto, and P. Woo. 1993. The role of NF-kappa B and NF-IL6 transactivating factors in the synergistic activation of human serum amyloid A gene expression by interleukin-1 and interleukin-6. The Journal of Biological Chemistry 268 (34): 25624–25631.

    CAS  PubMed  Google Scholar 

  19. Larson, M.A., S.H. Wei, A. Weber, A.T. Weber, and T.L. McDonald. 2003. Induction of human mammary-associated serum amyloid A3 expression by prolactin or lipopolysaccharide. Biochemical and Biophysical Research Communications 301 (4): 1030–1037.

    Article  CAS  Google Scholar 

  20. Whitehead, A.S., M.C. de Beer, D.M. Steel, M. Rits, J.M. Lelias, W.S. Lane, et al. 1992. Identification of novel members of the serum amyloid A protein superfamily as constitutive apolipoproteins of high density lipoprotein. The Journal of Biological Chemistry 267 (6): 3862–3867.

    CAS  PubMed  Google Scholar 

  21. de Beer, M.C., F.C. de Beer, C.J. Gerardot, D.R. Cecil, N.R. Webb, M.L. Goodson, and M.S. Kindy. 1996. Structure of the mouse Saa4 gene and its linkage to the serum amyloid A gene family. Genomics 34 (1): 139–142. https://doi.org/10.1006/geno.1996.0253.

    Article  PubMed  Google Scholar 

  22. de Beer, M.C., T. Yuan, M.S. Kindy, B.F. Asztalos, P.S. Roheim, and F.C. de Beer. 1995. Characterization of constitutive human serum amyloid A protein (SAA4) as an apolipoprotein. Journal of Lipid Research 36 (3): 526–534.

    PubMed  Google Scholar 

  23. Yamada, T., T. Kakihara, T. Kamishima, T. Fukuda, and T. Kawai. 1996. Both acute phase and constitutive serum amyloid A are present in atherosclerotic lesions. Pathology International 46 (10): 797–800.

    Article  CAS  Google Scholar 

  24. Yamada, T., N. Miyake, K. Itoh, and J. Igari. 2001. Further characterization of serum amyloid A4 as a minor acute phase reactant and a possible nutritional marker. Clinical Chemistry and Laboratory Medicine 39 (1): 7–10. https://doi.org/10.1515/CCLM.2001.003.

    Article  CAS  PubMed  Google Scholar 

  25. Lakota, K., K. Mrak-Poljsak, B. Rozman, T. Kveder, M. Tomsic, and S. Sodin-Semrl. 2007. Serum amyloid a activation of inflammatory and adhesion molecules inhuman coronary artery and umbilical vein endothelial cells. European Journal of Inflammation 5 (2): 73–81. https://doi.org/10.1177/1721727x0700500203.

    Article  CAS  Google Scholar 

  26. Wang, X.W., H. Chai, Z.H. Wang, P.H. Lin, Q.Z. Yao, and C.Y. Chen. 2008. Serum amyloid A induces endothelial dysfunction in porcine coronary arteries and human coronary artery endothelial cells. American Journal of Physiology-Heart and Circulatory Physiology 295 (6): H2399–HH408. https://doi.org/10.1152/ajpheart.00238.2008.

  27. Zhang, X.C., J.Q. Chen, and S.X. Wang. 2017. Serum amyloid A induces a vascular smooth muscle cell phenotype switch through the p38 MAPK signaling pathway. Biomed Research International 2017: 4941379. https://doi.org/10.1155/2017/4941379.

  28. Meek, R.L., S. Urielishoval, and E.P. Benditt. 1994. Expression of apolipoprotein serum amyloid A mRNA in human atherosclerotic lesions and cultured vascular cells: implications for serum amyloid A function. Proceedings of the National Academy of Sciences of the United States of America 91 (8): 3186–3190. https://doi.org/10.1073/pnas.91.8.3186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maier, W., L.A. Altwegg, R. Corti, S. Gay, M. Hersberger, F.E. Maly, G. Sütsch, M. Roffi, M. Neidhart, F.R. Eberli, F.C. Tanner, S. Gobbi, A. von Eckardstein, and T.F. Lüscher. 2005. Inflammatory markers at the site of ruptured plaque in acute myocardial infarction: locally increased interleukin-6 and serum amyloid A but decreased C-reactive protein. Circulation 111 (11): 1355–1361. https://doi.org/10.1161/01.Cir.0000158479.58589.0a.

    Article  CAS  PubMed  Google Scholar 

  30. Lakota, K., K. Mrak-Poljsak, B. Bozic, M. Tomsic, and S. Sodin-Semrl. 2013. Serum amyloid A activation of human coronary artery endothelial cells exhibits a neutrophil promoting molecular profile. Microvascular Research 90: 55–63. https://doi.org/10.1016/j.mvr.2013.07.011.

    Article  CAS  PubMed  Google Scholar 

  31. De Buck, M., M. Gouwy, J.M. Wang, J. Van Snick, P. Proost, S. Struyf, et al. 2016. The cytokine-serum amyloid A-chemokine network. Cytokine & Growth Factor Reviews 30: 55–69. https://doi.org/10.1016/j.cytogfr.2015.12.010.

    Article  CAS  Google Scholar 

  32. Kovacevic, A., A. Hammer, M. Sundl, B. Pfister, A. Hrzenjak, A. Ray, B.K. Ray, W. Sattler, and E. Malle. 2006. Expression of serum amyloid A transcripts in human trophoblast and fetal-derived trophoblast-like choriocarcinoma cells. FEBS Letters 580 (1): 161–167. https://doi.org/10.1016/j.febslet.2005.11.067.

    Article  CAS  PubMed  Google Scholar 

  33. Ganapathi, M.K., D. Rzewnicki, D. Samols, S.L. Jiang, and I. Kushner. 1991. Effect of combinations of cytokines and hormones on synthesis of serum amyloid A and C-reactive protein in Hep 3B cells. Journal of Immunology 147 (4): 1261–1265.

    CAS  Google Scholar 

  34. Kumon, Y., T. Suehiro, K. Hashimoto, K. Nakatani, and J.D. Sipe. 1999. Local expression of acute phase serum amyloid A mRNA in rheumatoid arthritis synovial tissue and cells. The Journal of Rheumatology 26 (4): 785–790.

    CAS  PubMed  Google Scholar 

  35. Thorn, C.F., Z.Y. Lu, and A.S. Whitehead. 2003. Tissue-specific regulation of the human acute-phase serum amyloid A genes, SAA1 and SAA2, by glucocorticoids in hepatic and epithelial cells. European Journal of Immunology 33 (9): 2630–2639. https://doi.org/10.1002/eji.200323985.

    Article  CAS  PubMed  Google Scholar 

  36. Lakota, K, N. Resnik, K. Mrak-Poljsak, S. Sodin-Semrl, and P. Veranic. 2011. Colocalization of serum amyloid A with microtubules in human coronary artery endothelial cells. Journal of Biomedicine and Biotechnology 2011: 528276.https://doi.org/10.1155/2011/528276.

  37. Jash, E., P. Prasad, N. Kumar, T. Sharma, A. Goldman, and S. Sehrawat. 2018. Perspective on nanochannels as cellular mediators in different disease conditions. Cell Communication and Signaling 16 (1): 76. https://doi.org/10.1186/s12964-018-0281-7..

  38. Mattes, B., and S. Scholpp. 2018. Emerging role of contact-mediated cell communication in tissue development and diseases. Histochemistry and Cell Biology 150 (5): 431–442. https://doi.org/10.1007/s00418-018-1732-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Buszczak, M., M. Inaba, and Y.M. Yamashita. 2016. Signaling by cellular protrusions: keeping the conversation private. Trends in Cell Biology 26 (7): 526–534. https://doi.org/10.1016/j.tcb.2016.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Astanina, K., M. Koch, C. Jungst, A. Zumbusch, and A.K. Kiemer. 2015. Lipid droplets as a novel cargo of tunnelling nanotubes in endothelial cells. Scientific Reports 5: 11453. https://doi.org/10.1038/srep11453.

  41. Abe, T., M. Kojima, S. Akanuma, H. Iwashita, T. Yamazaki, R. Okuyama, K. Ichikawa, M. Umemura, H. Nakano, S. Takahashi, and Y. Takahashi. 2014. N-terminal hydrophobic amino acids of activating transcription factor 5 (ATF5) protein confer interleukin 1beta (IL-1beta)-induced stabilization. The Journal of Biological Chemistry 289 (7): 3888–3900. https://doi.org/10.1074/jbc.M113.491217.

    Article  CAS  PubMed  Google Scholar 

  42. Lopez-Campos, J.L., C. Calero, B. Rojano, M. Lopez-Porras, J. Saenz-Coronilla, A.I. Blanco, et al. 2013. C-reactive protein and serum amyloid a overexpression in lung tissues of chronic obstructive pulmonary disease patients: a case-control study. International Journal of Medical Sciences 10 (8): 938–947. https://doi.org/10.7150/ijms.6152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kovacevic, A., A. Hammer, E. Stadelmeyer, W. Windischhofer, M. Sundl, A. Ray, N. Schweighofer, G. Friedl, R. Windhager, W. Sattler, and E. Malle. 2008. Expression of serum amyloid A transcripts in human bone tissues, differentiated osteoblast-like stem cells and human osteosarcoma cell lines. Journal of Cellular Biochemistry 103 (3): 994–1004. https://doi.org/10.1002/jcb.21472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Urielishoval, S., R.L. Meek, R.H. Hanson, N. Eriksen, and E.P. Benditt. 1994. Human serum amyloid a genes are expressed in monocyte/macrophage cell-lines. American Journal of Pathology. 145 (3): 650–660.

    CAS  Google Scholar 

  45. Sung, H.J., S.A. Jeon, J.M. Ahn, K.J. Seul, J.Y. Kim, J.Y. Lee, J.S. Yoo, S.Y. Lee, H. Kim, and J.Y. Cho. 2012. Large-scale isotype-specific quantification of serum amyloid A 1/2 by multiple reaction monitoring in crude sera. Journal of Proteomics 75 (7): 2170–2180. https://doi.org/10.1016/j.jprot.2012.01.018.

    Article  CAS  PubMed  Google Scholar 

  46. Kim, Y.J., S. Gallien, V. El-Khoury, P. Goswami, K. Sertamo, M. Schlesser, et al. 2015. Quantification of SAA1 and SAA2 in lung cancer plasma using the isotype-specific PRM assays. Proteomics 15 (18): 3116–3125. https://doi.org/10.1002/pmic.201400382.

    Article  CAS  PubMed  Google Scholar 

  47. De Buck, M., M. Gouwy, J.M. Wang, J. Van Snick, G. Opdenakker, S. Struyf, et al. 2016. Structure and expression of different serum amyloid A (SAA) variants and their concentration-dependent functions during host insults. Current Medicinal Chemistry 23 (17): 1725–1755. https://doi.org/10.2174/0929867323666160418114600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yamada, T., Y. Okuda, K. Takasugi, L.S. Wang, D. Marks, M.D. Benson, et al. 2003. An allele of serum amyloid A1 associated with amyloidosis in both Japanese and Caucasians. Amyloid-Journal of Protein Folding Disorders 10 (1): 7–11. https://doi.org/10.3109/13506120308995250.

    Article  CAS  Google Scholar 

  49. Yu, J., H. Zhu, J.T. Guo, F.C. de Beer, and M.S. Kindy. 2000. Expression of mouse apolipoprotein SAA1.1 in CE/J mice: isoform-specific effects on amyloidogenesis. Laboratory Investigation 80 (12): 1797–1806. https://doi.org/10.1038/labinvest.3780191.

    Article  CAS  PubMed  Google Scholar 

  50. Sipe, J.D., I. Carreras, W.A. Gonnerman, E.S. Cathcart, M.C. Debeer, and F.C. Debeer. 1993. Characterization of the inbred Ce/J mouse strain as amyloid resistant. American Journal of Pathology 143 (5): 1480–1485.

    CAS  PubMed  Google Scholar 

  51. Hou, T., B.C. Tieu, S. Ray, A. Recinos Iii, R. Cui, R.G. Tilton, et al. 2008. Roles of IL-6-gp130 signaling in vascular inflammation. Current Cardiology Reviews 4 (3): 179–192. https://doi.org/10.2174/157340308785160570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Romano, M., M. Sironi, C. Toniatti, N. Polentarutti, P. Fruscella, P. Ghezzi, et al. 1997. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6 (3): 315–325. https://doi.org/10.1016/S1074-7613(00)80334-9.

    Article  CAS  PubMed  Google Scholar 

  53. Steel, D.M., F.C. Donoghue, R.M. ONeill, C.M. Uhlar, and A.S. Whitehead. 1996. Expression and regulation of constitutive and acute phase serum amyloid A mRNAs in hepatic and non-hepatic cell lines. Scandinavian Journal of Immunology 44 (5): 493–500. https://doi.org/10.1046/j.1365-3083.1996.d01-341.x.

    Article  CAS  PubMed  Google Scholar 

  54. Kumon, Y., T. Suehiro, K. Hashimoto, and J.D. Sipe. 2001. Dexamethasone, but not IL-1 alone, upregulates acute-phase serum amyloid A gene expression and production by cultured human aortic smooth muscle cells. Scandinavian Journal of Immunology 53 (1): 7–12.

    Article  CAS  Google Scholar 

  55. Jiang, S.L., G. Lozanski, D. Samols, and I. Kushner. 1995. Induction of human serum amyloid-a in Hep-3b cells by Il-6 and Il-1-Beta involves both transcriptional and posttranscriptional mechanisms. Journal of Immunology 154 (2): 825–831.

    CAS  Google Scholar 

  56. Steel, D.M., J.T. Rogers, M.C. Debeer, F.C. Debeer, and A.S. Whitehead. 1993. Biosynthesis of human acute-phase serum amyloid A-protein (a-Saa) in vitro: the roles of meRNA accumulation, poly(A) tail shortening and translational efficiency. Biochemical Journal 291: 701–707. https://doi.org/10.1042/bj2910701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wahid, F., A. Shehzad, T. Khan, and Y.Y. Kim. 2010. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochimica Et Biophysica Acta-Molecular Cell Research 1803 (11): 1231–1243. https://doi.org/10.1016/j.bbamcr.2010.06.013.

    Article  CAS  Google Scholar 

  58. Lucherini, O.M., L. Obici, M. Ferracin, V. Fulci, M.F. McDermott, G. Merlini, et al. 2013. First report of circulating microRNAs in tumour necrosis factor receptor-associated periodic syndrome (TRAPS). PLoS One 8 (9): e73443.https://doi.org/10.1371/journal.pone.0073443.

  59. Puthanveetil, P., S. Chen, B. Feng, A. Gautam, and S. Chakrabarti. 2015. Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. Journal of Cellular and Molecular Medicine 19 (6): 1418–1425. https://doi.org/10.1111/jcmm.12576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhuang, Y.T., D.Y. Xu, G.Y. Wang, J.L. Sun, Y. Huang, and S.Z. Wang. 2017. IL-6 induced lncRNA MALAT1 enhances TNF-alpha expression in LPS-induced septic cardiomyocytes via activation of SAA3. European Review for Medical and Pharmacological Sciences 21 (2): 302–309.

    PubMed  Google Scholar 

  61. Wang, L., and W. Colon. 2005. Urea-induced denaturation of apolipoprotein serum amyloid A reveals marginal stability of hexamer. Protein Science 14 (7): 1811–1817. https://doi.org/10.1110/ps.051387005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Villapol, S., D. Kryndushkin, M.G. Balarezo, A.M. Campbell, J.M. Saavedra, F.P. Shewmaker, and A.J. Symes. 2015. Hepatic expression of serum amyloid A1 is induced by traumatic brain injury and modulated by telmisartan. The American Journal of Pathology 185 (10): 2641–2652. https://doi.org/10.1016/j.ajpath.2015.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, L.M., H.A. Lashuel, T. Walz, and W. Colon. 2002. Murine apolipoprotein serum amyloid A in solution forms a hexamer containing a central channel. Proceedings of the National Academy of Sciences of the United States of America 99 (25): 15947–15952. https://doi.org/10.1073/pnas.252508399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, Y., S. Srinivasan, Z.Q. Ye, J.J. Aguilera, M.M. Lopez, and W. Colon. 2011. Serum amyloid A 2.2 refolds into a octameric oligomer that slowly converts to a more stable hexamer. Biochemical and Biophysical Research Communications 407 (4): 725–729. https://doi.org/10.1016/j.bbrc.2011.03.090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lu, J.H., Y.D. Yu, I. Zhu, Y.F. Cheng, and P.D. Sun. 2014. Structural mechanism of serum amyloid A-mediated inflammatory amyloidosis. Proceedings of the National Academy of Sciences of the United States of America 111 (14): 5189–5194. https://doi.org/10.1073/pnas.1322357111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Claus, S., I. Puscalau-Girtu, P. Walther, T. Syrovets, T. Simmet, C. Haupt, and M. Fändrich. 2017. Cell-to-cell transfer of SAA1 protein in a cell culture model of systemic AA amyloidosis. Scientific Reports 7: 45683.https://doi.org/10.1038/srep45683.

Download references

Funding

The study was supported by the Slovenian Research Agency ARRS within the National Research Program #P30314.

Author information

Authors and Affiliations

Authors

Contributions

TK, SSS, and AE designed the experiments, acquired and analyzed the data, and wrote the manuscript. TK, KMP, and KL performed the experiments. KL, SČ, and SSS coordinated the study. All authors participated in critical discussion of the data and drafting the manuscript.

Corresponding author

Correspondence to Tadeja Kuret.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuret, T., Sodin-Šemrl, S., Mrak-Poljšak, K. et al. Interleukin-1β Induces Intracellular Serum Amyloid A1 Expression in Human Coronary Artery Endothelial Cells and Promotes its Intercellular Exchange. Inflammation 42, 1413–1425 (2019). https://doi.org/10.1007/s10753-019-01003-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01003-3

KEY WORDS

Navigation