Skip to main content
Log in

Clindamycin Administration Increases the Incidence of Collagen-Induced Arthritis in Mice Through the Prolonged Impact of Gut Immunity

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The profound influence of gut flora on host immune system and its link with autoimmune disorders have been established. However, the role of certain antibiotic in progression of autoimmune disorder is still confusing. Here, we employed a collagen-induced arthritis (CIA) model to explore the role of clindamycin administration in different scenarios. In the first scenario, mice treated with antibiotics for 4 weeks were performed with the induction of CIA immediately. The results showed that clindamycin administration promoted the incidence and severity of CIA, while the recipients of vancomycin showed completed tolerance. We also found that increased gut-associated Th1 and Th17 cells might be related to the subsequent expansion of collagen-specific immune response. In the second scenario, mice treated with antibiotics for 4 weeks were performed with CIA induction 4 weeks later. Notably, clindamycin administration showed a prolonged impact on the incidence and severity of CIA, as well as the gut immunity as compared to vancomycin administration. In addition, antibody depletion of integrin α4β7 systemically resulted in an impaired CIA response, underlining the influence of gut immunity. In the mice that received clindamycin, the abundance of anaerobic bacteria was significantly decreased and showed little recovery at 4 weeks later. Our observations highlighted the different characteristics of antibiotic administration on the development of autoimmune disorders and indicated its link with gut immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Harris, E.D., Jr. 1990. Rheumatoid arthritis. Pathophysiology and implications for therapy. The New England Journal of Medicine 322 (18): 1277–1289. https://doi.org/10.1056/NEJM199005033221805.

    Article  PubMed  Google Scholar 

  2. Feldmann, M., F.M. Brennan, and R.N. Maini. 1996. Rheumatoid arthritis. Cell. 85 (3): 307–310.

    Article  PubMed  CAS  Google Scholar 

  3. Brennan, F.M., and I.B. McInnes. 2008. Evidence that cytokines play a role in rheumatoid arthritis. The Journal of Clinical Investigation. 118 (11): 3537–3545. https://doi.org/10.1172/JCI36389.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Firestein, G.S., and I.B. McInnes. 2017. Immunopathogenesis of Rheumatoid Arthritis. Immunity. 46 (2): 183–196. https://doi.org/10.1016/j.immuni.2017.02.006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hasunuma, T., K. Nishioka, and K. Nishioka. 1997. Microorganisms in chronic arthritis. Lancet. 350 (9071): 145. https://doi.org/10.1016/S0140-6736(05)61852-1.

    Article  PubMed  CAS  Google Scholar 

  6. Zhang, X., D. Zhang, H. Jia, Q. Feng, D. Wang, D. Liang, et al. 2015. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nature Medicine 21 (8): 895–905. https://doi.org/10.1038/nm.3914.

    Article  PubMed  CAS  Google Scholar 

  7. Wu, H.J., I.I. Ivanov, J. Darce, K. Hattori, T. Shima, Y. Umesaki, et al. 2010. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 32 (6): 815–827. https://doi.org/10.1016/j.immuni.2010.06.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Hooper, L.V., D.R. Littman, and A.J. Macpherson. 2012. Interactions between the microbiota and the immune system. Science. 336 (6086): 1268–1273. https://doi.org/10.1126/science.1223490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Sallusto, F. 2016. Heterogeneity of Human CD4(+) T Cells Against Microbes. Annual Review of Immunology. 34: 317–334. https://doi.org/10.1146/annurev-immunol-032414-112,056.

    Article  PubMed  CAS  Google Scholar 

  10. Tanoue, T., K. Atarashi, and K. Honda. 2016. Development and maintenance of intestinal regulatory T cells. Nature reviews Immunology. 16 (5): 295–309. https://doi.org/10.1038/nri.2016.36.

    Article  PubMed  CAS  Google Scholar 

  11. Strzepa, A., M. Majewska-Szczepanik, F.M. Lobo, L. Wen, and M. Szczepanik. 2017. Broad spectrum antibiotic enrofloxacin modulates contact sensitivity through gut microbiota in a murine model. The Journal of Allergy and Clinical Immunology. 140 (1): 121–133 e3. https://doi.org/10.1016/j.jaci.2016.11.052.

    Article  PubMed  CAS  Google Scholar 

  12. Dorozynska, I., M. Majewska-Szczepanik, K. Marcinska, and M. Szczepanik. 2014. Partial depletion of natural gut flora by antibiotic aggravates collagen-induced arthritis (CIA) in mice. Pharmacological Reports 66 (2): 250–255. https://doi.org/10.1016/j.pharep.2013.09.007.

    Article  PubMed  CAS  Google Scholar 

  13. Yurkovetskiy, L., M. Burrows, A.A. Khan, L. Graham, P. Volchkov, L. Becker, et al. 2013. Gender bias in autoimmunity is influenced by microbiota. Immunity. 39 (2): 400–412. https://doi.org/10.1016/j.immuni.2013.08.013.

    Article  PubMed  CAS  Google Scholar 

  14. Daum, R.S. 2007. Clinical practice. Skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus. The New England Journal of Medicine. 357 (4): 380–390. https://doi.org/10.1056/NEJMcp070747.

    Article  PubMed  CAS  Google Scholar 

  15. Robinson, C.J., and V.B. Young. 2010. Antibiotic administration alters the community structure of the gastrointestinal micobiota. Gut Microbes. 1 (4): 279–284. https://doi.org/10.4161/gmic.1.4.12614.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jernberg, C., S. Lofmark, C. Edlund, and J.K. Jansson. 2007. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. The ISME Journal. 1 (1): 56–66. https://doi.org/10.1038/ismej.2007.3.

    Article  PubMed  CAS  Google Scholar 

  17. Bach, J.F. 2018. The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nature Reviews Immunology. 18 (2): 105–120. https://doi.org/10.1038/nri.2017.111.

    Article  PubMed  CAS  Google Scholar 

  18. Baumler, A.J., and V. Sperandio. 2016. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 535 (7610): 85–93. https://doi.org/10.1038/nature18849.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Berer, K., and G. Krishnamoorthy. 2012. Commensal gut flora and brain autoimmunity: a love or hate affair? Acta Neuropathologica. 123 (5): 639–651. https://doi.org/10.1007/s00401-012-0949-9.

    Article  PubMed  CAS  Google Scholar 

  20. Cremonesi, E., V. Governa, J.F.G. Garzon, V. Mele, F. Amicarella, M.G. Muraro, et al. 2018. Gut microbiota modulate T cell trafficking into human colorectal cancer. Gut. https://doi.org/10.1136/gutjnl-2016-313498.

  21. Viladomiu, M., C. Kivolowitz, A. Abdulhamid, B. Dogan, D. Victorio, J.G. Castellanos, et al. 2017. IgA-coated E. coli enriched in Crohn’s disease spondyloarthritis promote TH17-dependent inflammation. Science Translational Medicine. 9 (376). https://doi.org/10.1126/scitranslmed.aaf9655.

  22. Ivanov, I.I., K. Atarashi, N. Manel, E.L. Brodie, T. Shima, U. Karaoz, et al. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 139 (3): 485–498. https://doi.org/10.1016/j.cell.2009.09.033.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. David, R. 2010. Regulatory T cells: A helping hand from Bacteroides fragilis. Nature Reviews Immunology. 10 (8): 539. https://doi.org/10.1038/nri2827.

    Article  PubMed  CAS  Google Scholar 

  24. Yang, Y., M.B. Torchinsky, M. Gobert, H. Xiong, M. Xu, J.L. Linehan, et al. 2014. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature. 510 (7503): 152–156. https://doi.org/10.1038/nature13279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zaura, E., B.W. Brandt, M.J. Teixeira de Mattos, M.J. Buijs, M.P. Caspers, M.U. Rashid, et al. 2015. Same Exposure but Two Radically Different Responses to Antibiotics: Resilience of the Salivary Microbiome versus Long-Term Microbial Shifts in Feces. mBio. 6 (6): e01693–e01615. https://doi.org/10.1128/mBio.01693-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sun, X., K. Winglee, R.Z. Gharaibeh, J. Gauthier, Z. He, P. Tripathi, et al. 2018. Microbiota-Derived Metabolic Factors Reduce Campylobacteriosis in Mice. Gastroenterology. https://doi.org/10.1053/j.gastro.2018.01.042.

  27. Lemon, K.P., G.C. Armitage, D.A. Relman, and M.A. Fischbach. 2012. Microbiota-targeted therapies: an ecological perspective. Science Translational Medicine. 4 (137): 137rv5. https://doi.org/10.1126/scitranslmed.3004183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Rashid, M.U., E. Zaura, M.J. Buijs, B.J. Keijser, W. Crielaard, C.E. Nord, et al. 2015. Determining the Long-term Effect of Antibiotic Administration on the Human Normal Intestinal Microbiota Using Culture and Pyrosequencing Methods. Clinical Infectious Diseases 60 (Suppl 2): S77–S84. https://doi.org/10.1093/cid/civ137.

    Article  PubMed  CAS  Google Scholar 

  29. Strzepa, A., M. Majewska-Szczepanik, P. Kowalczyk, D. Wozniak, S. Motyl, and M. Szczepanik. 2016. Oral treatment with enrofloxacin early in life promotes Th2-mediated immune response in mice. Pharmacological Reports 68 (1): 44–50. https://doi.org/10.1016/j.pharep.2015.07.002.

    Article  PubMed  CAS  Google Scholar 

  30. Cho, I., S. Yamanishi, L. Cox, B.A. Methe, J. Zavadil, K. Li, et al. 2012. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 488 (7413): 621–626. https://doi.org/10.1038/nature11400.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sigmundsdottir, H., and E.C. Butcher. 2008. Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking. Nature Immunology. 9 (9): 981–987. https://doi.org/10.1038/ni.f.208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Mora, J.R., M.R. Bono, N. Manjunath, W. Weninger, L.L. Cavanagh, M. Rosemblatt, et al. 2003. Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature. 424 (6944): 88–93. https://doi.org/10.1038/nature01726.

    Article  PubMed  CAS  Google Scholar 

  33. Johansson-Lindbom, B., M. Svensson, O. Pabst, C. Palmqvist, G. Marquez, R. Forster, et al. 2005. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. The Journal of Experimental Medicine. 202 (8): 1063–1073. https://doi.org/10.1084/jem.20051100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiecong Sun.

Ethics declarations

Mice were housed in a specific pathogen-free environment and all the procedures were approved by the Ethics Committee of Guangdong Medical University.

Competing Interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Chen, H., Wei, B. et al. Clindamycin Administration Increases the Incidence of Collagen-Induced Arthritis in Mice Through the Prolonged Impact of Gut Immunity. Inflammation 41, 1900–1911 (2018). https://doi.org/10.1007/s10753-018-0833-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0833-4

KEY WORDS

Navigation