Skip to main content

Advertisement

Log in

Protection by mTOR Inhibition on Zymosan-Induced Systemic Inflammatory Response and Oxidative/Nitrosative Stress: Contribution of mTOR/MEK1/ERK1/2/IKKβ/IκB-α/NF-κB Signalling Pathway

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Mammalian target of rapamycin (mTOR), a serine/threonine kinase regulate variety of cellular functions including cell growth, differentiation, cell survival, metabolism, and stress response, is now appreciated to be a central regulator of immune responses. Because mTOR inhibitors enhanced the anti-inflammatory activities of regulatory T cells and decreased the production of proinflammatory cytokines by macrophages, mTOR has been a pharmacological target for inflammatory diseases. In this study, we examined the role of mTOR in the production of proinflammatory and vasodilator mediators in zymosan-induced non-septic shock model in rats. To elucidate the mechanism by which mTOR contributes to non-septic shock, we have examined the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system caused by mTOR/mitogen-activated protein kinase kinase (MEK1)/extracellular signal-regulated kinase (ERK1/2)/inhibitor κB kinase (IKKβ)/inhibitor of κB (IκB-α)/nuclear factor-κB (NF-κB) signalling pathway activation. After 1 h of zymosan (500 mg/kg, i.p.) administration to rats, mean arterial blood pressure (MAP) was decreased and heart rate (HR) was increased. These changes were associated with increased expression and/or activities of ribosomal protein S6, MEK1, ERK1/2, IKKβ, IκB-α and NF-κB p65, and NADPH oxidase system activity in cardiovascular and renal tissues. Rapamycin (1 mg/kg, i.p.), a selective mTOR inhibitor, reversed these zymosan-induced changes in these tissues. These observations suggest that activation of mTOR/MEK1/ERK1/2/IKKβ/IκB-α/NF-κB signalling pathway with proinflammatory and vasodilator mediator formation and NADPH oxidase system activity contributes to systemic inflammation in zymosan-induced non-septic shock. Thus, mTOR may be an optimal target for the treatment of the diseases characterized by the severe systemic inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Botwinski, C.A. 2001. Systemic inflammatory response syndrome. Neonatal Network 20: 218.

    Article  Google Scholar 

  2. Di Paola, R., E. Mazzon, C. Muia, C. Crisafulli, T. Genovese, P. Di Bella, E. Esposito, M. Menegazzi, R. Meli, H. Suzuki, and S. Cuzzocrea. 2006. Green tea polyphenol extract attenuates zymosan-induced non-septic shock in mice. Shock 26: 402–409.

    Article  PubMed  Google Scholar 

  3. Cuzzocrea, S., G. de Sarro, G. Costantino, E. Mazzon, R. Laura, E. Ciriaco, A. de Sarro, and A.P. Caputi. 1999. Role of interleukin-6 in a non-septic shock model induced by zymosan. European Cytokine Network 10: 191–203.

    CAS  PubMed  Google Scholar 

  4. Mondello, S., M. Galuppo, E. Mazzon, D. Italiano, P. Mondello, C. Aloisi, and S. Cuzzocrea. 2011. Glutamine treatment attenuates the development of organ injury induced by zymosan administration in mice. European Journal of Pharmacology 658: 28–40.

    Article  CAS  PubMed  Google Scholar 

  5. Cuzzocrea, S., A. Filippelli, B. Zingarelli, M. Falciani, A.P. Caputi, and F. Rossi. 1997. Role of nitric oxide in a non-septic shock model induced by zymosan in the rat. Shock 7: 351–358.

    Article  CAS  PubMed  Google Scholar 

  6. Underhill, D.M. 2003. Macrophage recognition of zymosan particles. Journal of Endotoxin Research 9: 176–180.

    Article  CAS  PubMed  Google Scholar 

  7. Takeuchi, O., and S. Akira. 2001. Toll-like receptors; their physiological role and signal transduction system. International Immunopharmacology 1: 625–635.

    Article  CAS  PubMed  Google Scholar 

  8. Liu, Y., J. Li, Y. Liu, P. Wang, and H. Jia. 2016. Inhibition of zymosan-induced cytokine and chemokine expression in human corneal fibroblasts by triptolide. International Journal of Ophthalmology 9 (1): 9–14.

    PubMed  PubMed Central  Google Scholar 

  9. Nomi, N., K. Kimura, and T. Nishida. 2010. Release of ınterleukins 6 and 8 ınduced by zymosan and mediated by MAP kinase and NF-κB signaling pathways in human corneal fibroblasts. Investigative Ophthalmology&Visual Scince 51 (6): 2955–2559.

    Article  Google Scholar 

  10. Di Paola, R., M. Galuppo, E. Mazzon, I. Paterniti, P. Bramanti, and S. Cuzzocrea. 2010. PD98059, a specific MAP kinase inhibitor, attenuates multiple organ dysfunction syndrome/failure (MODS) induced by zymosan in mice. Pharmacological Research 61: 175–187.

    Article  PubMed  Google Scholar 

  11. Chang, L., and M. Karin. 2001. Mammalian MAP kinase signalling cascades. Nature 410: 37–40.

    Article  CAS  PubMed  Google Scholar 

  12. Di, R., M.T. Huang, and C.T. Ho. 2011. Anti-inflammatory activities of mogrosides from Momordica grosvenori in murine macrophages and a murine ear edema model. Journal of Agricultural and Food Chemistry 59: 7474–7481.

    Article  CAS  PubMed  Google Scholar 

  13. Chung, W.Y., J.H. Park, M.J. Kim, H.O. Kim, J.K. Hwang, S.K. Lee, and K.K. Park. 2007. Xanthorrhizol inhibits 12-Otetradecanoylphorbol-13-acetate-induced acute inflammation and two-stage mouse skin carcinogenesis by blocking the expression of ornithine decarboxylase, cyclooxygenase-2 and inducible nitric oxide synthase through mitogen-activated protein kinases and/or the nuclear factor-kB. Carcinogenesis 28: 1224–1231.

    Article  CAS  PubMed  Google Scholar 

  14. Ho, Y.S., C.S. Lai, H.I. Liu, S.Y. Ho, C. Tai, M.H. Pan, and Y.J. Wang. 2007. Dihydrolipoic acid inhibits skin tumor promotion through anti-inflammation and anti-oxidation. Biochemical Pharmacology 73: 1786–1795.

    Article  CAS  PubMed  Google Scholar 

  15. Yamakawa, T., S. Eguchi, T. Matsumoto, Y. Yamakawa, K. Numaguchi, I. Miyata, C.M. Reynolds, E.D. Motley, and T. Inagami. 1999. Intracellular signalling in rat cultured vascular smooth muscle cells: roles of nuclear factor-kappaB and p38 mitogen-activated protein kinase on tumor necrosis factor-alpha production. Endocrinology 140: 3562–3572.

    Article  CAS  PubMed  Google Scholar 

  16. Folmer, F., M. Jaspars, M. Dicato, and M. Diederich. 2008. Marine natural products as targeted modulators of the transcription factor NF-kB. Biochemical Pharmacology 75: 603–617.

    Article  CAS  PubMed  Google Scholar 

  17. Korkmaz, B., E. Ozveren, C.K. Buharalioglu, and B. Tunctan. 2006. Extracellular signal-regulated kinase (ERK1/2) contributes to endotoxin induced hyporeactivity via nitric oxide and prostacyclin production in rat aorta. Pharmacology 78: 123–128.

    Article  CAS  PubMed  Google Scholar 

  18. Tunctan, B., B. Korkmaz, Z.N. Dogruer, L. Tamer, U. Atik, and C.K. Buharalioglu. 2007. Inhibition of extracellular signal-regulated kinase (ERK1/2) activity reverses endotoxin-ınduced hypotension via decreased nitric oxide production in rats. Pharmacological Research 56: 56–64.

    Article  CAS  PubMed  Google Scholar 

  19. Korkmaz, B., T. Cuez, C.K. Buharalioglu, A.T. Demiryurek, S. Sahan-Firat, A.N. Sari, and B. Tunctan. 2012. Contribution of MEK1/ERK1/2/iNOS pathway to oxidative stress and decreased caspase-3 activity in endotoxemic rats. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry 11: 243–252.

    Article  CAS  Google Scholar 

  20. Vera, S., R. Martínez, J.G. Gormaz, A. Gajardo, F. Galleguillos, and R. Rodrigo. 2015. Novel relationships between oxidative stress and angiogenesis-related factors in sepsis: new biomarkers and therapies. Annals of Medicine 47: 289–300.

    Article  CAS  PubMed  Google Scholar 

  21. Irani, K. 2000. Oxidant signalling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signalling. Circulation Research 87: 179–183.

    Article  CAS  PubMed  Google Scholar 

  22. Imai, Y., K. Kuba, G.G. Neely, R. Yaghubian-Malhami, T. Perkmann, G. van Loo, M. Ermolaeva, R. Veldhuizen, Y.H. Leung, H. Wang, H. Liu, Y. Sun, M. Pasparakis, M. Kopf, C. Mech, S. Bavari, J.S. Peiris, A.S. Slutsky, S. Akira, M. Hultqvist, R. Holmdahl, J. Nicholls, C. Jiang, C.J. Binder, and J.M. Penninger. 2008. Identification of oxidative stress and Toll-like receptor 4 signalling as a key pathway of acute lung injury. Cell 133: 235–249.

    Article  CAS  PubMed  Google Scholar 

  23. Hayashi, F., T.K. Means, and A.D. Luster. 2003. Toll-like receptors stimulate human neutrophil function. Blood 102: 2660–2669.

    Article  CAS  PubMed  Google Scholar 

  24. Elsori, D.H., V.P. Yakubenko, T. Roome, P.S. Thiagarajan, A. Bhattacharjee, S.P. Yadav, and M.K. Cathcart. 2011. Protein kinase C d is a critical component of Dectin-1 signalling in primary human monocytes. Journal of Leukocyte Biology 90: 599–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Washo-Stultz, D., N. Hoglen, H. Bernstein, C. Bernstein, and C.M. Payne. 1999. Role of nitric oxide and peroxynitrite in bile salt-induced apoptosis: relevance to colon carcinogenesis. Nutrition and Cancer 35: 180–188.

    Article  CAS  PubMed  Google Scholar 

  26. Ayala, A., M. Perl, F. Venet, J. Lomas-Neira, R. Swan, and C.S. Chung. 2008. Apoptosis in sepsis: mechanisms, clinical impact and potential therapeutic targets. Current Pharmaceutical Design 14: 1853–1859.

    Article  CAS  PubMed  Google Scholar 

  27. Dahlgren, C., and A. Karlsson. 1999. Respiratory burst in human neutrophils. Journal of Immunological Methods 232: 3–14.

    Article  CAS  PubMed  Google Scholar 

  28. Cuzzocrea, S., P.K. Chatterjee, E. Mazzon, I. Serraino, L. Dugo, T. Centorrino, A. Barbera, A. Ciccolo, F. Fulia, M.C. McDonald, A.P. Caputi, and C. Thiemermann. 2002. Effects of calpain inhibitor I on multiple organ failure induced by zymosan in the rat. Critical Care Medicine 30: 2284–2294.

    Article  CAS  PubMed  Google Scholar 

  29. Schmelzle, T., and M.N. Hall. 2000. TOR, a central controller of cell growth. Cell 103: 253–262.

    Article  CAS  PubMed  Google Scholar 

  30. Gomez-Cambronero, J., J. Horn, C.C. Paul, and M.A. Baumann. 2003. Granulocyte-macrophage colony-stimulating factor is a chemoattractant cytokine for human neutrophils: involvement of the ribosomal p70 S6 kinase signalling pathway. Journal of Immunology 171: 6846–6855.

    Article  CAS  Google Scholar 

  31. Kim, M.S., H.S. Kuehn, D.D. Metcalfe, and A.M. Gilfillan. 2008. Activation and function of the mTORC1 pathway in mast cells. Journal of Immunology 180: 4586–4595.

    Article  CAS  Google Scholar 

  32. Weichhart, T., and M.D. Saemann. 2009. The multiple facets of mTOR in immunity. Trends in Immunology 30: 218–226.

    Article  CAS  PubMed  Google Scholar 

  33. Xie, L., F. Sun, J. Wang, X. Mao, L. Xie, S.H. Yang, D.M. Su, J.W. Simpkins, D.A. Greenberg, and K. Jin. 2014. mTOR signalling inhibition modulates macrophage/microglia-mediated neuroinflammation and secondary injury via regulatory T cells after focal ischemia. The Journal of Immunology 192: 6009–6019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Soliman, G.A. 2013. The role of mechanistic target of rapamycin (mTOR) complexes signalling in the immune responses. Nutrients 5: 2231–2257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Temiz-Resitoglu, M., S.P. Kucukkavruk, D.S. Guden, P. Cecen, A.N. Sari, B. Tunctan, A. Gorur, L. Tamer-Gumus, C.K. Buharalioglu, K.U. Malik, and S. Sahan-Firat. 2017. Activation of mTOR/IκB-α/NF-κB pathway contributes to LPS-induced hypotension and inflammation in rats. European Journal of Pharmacology 802: 7–19.

    Article  CAS  PubMed  Google Scholar 

  36. Mengke, N.S., B. Hu, Q.P. Han, Y.Y. Deng, M. Fang, D. Xie, A. Li, and H.K. Zeng. 2016. Rapamycin inhibits lipopolysaccharide-induced neuroinflammation in vitro and in vivo. Molecular Medicine Reports 14 (6): 4957–4966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  38. Tunctan, B., B. Korkmaz, A.N. Sari, M. Kacan, D. Unsal, M.S. Serin, C.K. Buharalioglu, S. Sahan-Firat, T. Cuez, W.H. Schunck, J.R. Falck, and K.U. Malik. 2013a. 5,14- HEDGE, a 20-HETE mimetic, reverses hypotension and improves survival in a rodent model of septic shock: contribution of soluble epoxide hydrolase, CYP2C23, MEK1/ERK1/2/IKKβ/IκB-α/NF-κB pathway, and proinflammatory cytokine formation. Prostaglandins & Other Lipid Mediators 102–103: 31–41.

    Article  Google Scholar 

  39. Tunctan, B., A.N. Sari, M. Kacan, D. Unsal, C.K. Buharalioglu, S. Sahan-Firat, B. Korkmaz, J.R. Falck, and K.U. Malik. 2012. NS-398 reverses hypotension in endotoxemic rats: contribution of eicosanoids, NO, and peroxynitrite. Prostaglandins & Other Lipid Mediators 104-105: 93–108.

    Article  Google Scholar 

  40. Green, L.C., D.A. Wagner, J. Glogowski, P.L. Skipper, J.S. Wishnok, and S.R. Tannenbaum. 1982. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Analytical Biochemistry 126: 131–138.

    Article  CAS  PubMed  Google Scholar 

  41. Tunctan, B., B. Korkmaz, H. Yildirim, L. Tamer, U. Atik, and C.K. Buharalioglu. 2005. Increased production of nitric oxide contributes to renal oxidative stress in endotoxemic rat. American Journal of Infectious Diseases 1: 111–115.

    Article  CAS  Google Scholar 

  42. McGeer, P.L., and E.G. McGeer. 2008. Glial reactions in Parkinson’s disease. Movement Disorders 23: 474–483.

    Article  PubMed  Google Scholar 

  43. Jia, W., L. Cao, S. Yang, H. Dong, Y. Zhang, H. Wei, W. Jing, L. Hou, and C. Wang. 2013. Regulatory T cells are protective in systemic inflammation response syndrome induced by zymosan in mice. PLoS One 8: e64397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu, Q.Y., Y.Y. Zhou, J.B. Wang, L. Wang, L. Meng, J.K. Weng, B. Yu, and S. Quan. 2011. Preparation of rat model of systemic inflammatory response syndrome induced by zymosan. Zhejiang Da Xue Xue Bao. Yi Xue Ban 40: 641–646.

    CAS  PubMed  Google Scholar 

  45. Tunctan, B., B. Korkmaz, A.N. Sari, M. Kacan, D. Unsal, M.S. Serin, C.K. Buharalioglu, S. Sahan-Firat, W.H. Schunck, J.R. Falck, and K.U. Malik. 2012. A novel treatment strategy for sepsis and septic shock based on the interaction between prostanoids, nitric oxide, and 20-hydroxyeicosatetraenoic acid. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry 11: 121–150.

    Article  CAS  Google Scholar 

  46. O'Sullivan, A.W., J.H. Wang, and H.P. Redmond. 2009. NF-kappa B and p38 MAPK inhibition improve survival in endotoxin shock and in a cecal ligation and puncture model of sepsis in combination with antibiotic therapy. Journal of Surgical Research 152: 46–53.

    Article  PubMed  Google Scholar 

  47. Silva, J.D., B. Pierrat, J.L. Mary, and W. Lesslauer. 1997. Blockade of p38 mitogenactivated protein kinase pathway inhibits inducible nitric-oxide synthase expression in mouse astrocytes. The Journal of Biological Chemistry 272: 28737–28380.

    Google Scholar 

  48. Larsen, C.M., K.A.W. Wadt, L.F. Juhl, H.U. Andersen, A.E. Karlsen, M.S.S. Su, K. Seedorf, L. Shapiro, C.A. Dinarello, and T. Mandrup-Poulsen. 1998. Interleukin-1β-induced rat pancreatic islet nitric oxide synthesis requires both the p38 and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases. The Journal of Biological Chemistry 273: 15294–15300.

    Article  CAS  PubMed  Google Scholar 

  49. Duan, W., J.H. Chan, C.H. Wong, B.P. Leung, and W.S. Wong. 2004. Anti-inflammatory effects of mitogen-activated protein kinase kinase inhibitor U0126 in an asthma mouse model. The Journal of Immunology 172: 7053–7059.

    Article  CAS  PubMed  Google Scholar 

  50. Lee, P.J., X. Zhang, P. Shan, B. Ma, C.G. Lee, and R.J. Homer. 2006. ERK1/2 mitogen-activated protein kinase selectively mediates IL-13-induced lung inflammation and remodeling in vivo. Journal of Clinical Investigation 116: 163–173.

    Article  CAS  PubMed  Google Scholar 

  51. Goris, R.J., W.K. Boekholtz, I.P. Van Bebber, J.K. Nuytinck, and P.H. Schillings. 1986. Multiple organ failure and sepsis without bacteria. An experimental model. Archives of Surgery 121: 897–901.

    Article  CAS  PubMed  Google Scholar 

  52. Deitch, E.A. 1992. Multiple organ failure. pathophysiology and potential future therapy. Annals of Surgery 216: 117–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cuzzocrea, S., G. Costantino, E. Mazzon, and A.P. Caputi. 1999. Protective effect of Nacetylcysteine on multiple organ failure induced by zymosan in the rat. Critical Care Medicine 27: 1524–1532.

    Article  CAS  PubMed  Google Scholar 

  54. Goris, R.J., I.P. Van Bebber, R.M. Mollen, and J.P. Koopman. 1991. Does selective decontamination of the gastrointestinal tract prevent multiple organ failure? An experimental study. Archives of Surgery 126: 561–565.

    Article  CAS  PubMed  Google Scholar 

  55. Demling, R., U. Nayak, K. Ikegami, and C. LaLonde. 1994. Comparison between lung and liver lipid peroxidation and mortality after zymosan peritonitis in the rat. Shock 2: 222–227.

    Article  CAS  PubMed  Google Scholar 

  56. Van Bebber, I.P., W.K. Boekholz, R.J. Goris, P.H. Schillings, H.P. Dinges, S. Bahrami, H. Redl, and G. Schlag. 1989. Neutrophil function and lipid peroxidation in a rat model of multiple organ failure. Journal of Surgical Research 47: 471–475.

    Article  PubMed  Google Scholar 

  57. Zandi, E., Y. Chen, and M. Karin. 1998. Direct phosphorylation of IkappaB by IKKalpha and IKKbeta: discrimination between free and NF-kappaB bound substrate. Science 281: 1360–1363.

    Article  CAS  PubMed  Google Scholar 

  58. DiDonato, J.A., M. Hayakawa, D.M. Rothwarf, E. Zandi, and M. Karin. 1997. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388: 548–554.

    Article  CAS  PubMed  Google Scholar 

  59. Mercurio, F., H. Zhu, B.W. Murray, A. Shevchenko, B.L. Bennett, J. Li, D.B. Young, M. Barbosa, M. Mann, A. Manning, and A. Rao. 1997. IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278: 860–866.

    Article  CAS  PubMed  Google Scholar 

  60. Volman, T.J., T. Hendriks, A.A. Verhofstad, B.J. Kullberg, and R.J. Goris. 2002. Improved survival of TNF-deficient mice during the zymosan-induced multiple organ dysfunction syndrome. Shock 17: 468–472.

    Article  PubMed  Google Scholar 

  61. Jansen, M.J., T. Hendriks, R. Hermsen, J.W. Van der Meer, and R.J. Goris. 1998. A monoclonal antibody against tumour necrosis factor-alpha improves survival in experimental multiple organ dysfunction syndrome. Cytokine 10: 904–910.

    Article  CAS  PubMed  Google Scholar 

  62. Aikawa, N., Y. Shinozawa, K. Ishibiki, O. Abe, S. Yamamoto, and M. Motegi. 1987. Clinical analysis of multiple organ failure in burned patients. Burns, Including Thermal Injury 13: 103–109.

    Article  CAS  PubMed  Google Scholar 

  63. Von Asmuth, E.J., J.G. Maessen, C.J. van der Linden, and W.A. Buurman. 1990. Tumour necrosis factor alpha (TNF-alpha) and interleukin 6 in a zymosan-induced shock model. Scandinavian Journal of Immunology 32: 313–319.

    Article  Google Scholar 

  64. Petit, F., G.J. Bagby, and C.H. Lang. 1995. Tumor necrosis factor mediates zymosan-induced increase in glucose flux and insulin resistance. American Journal of Physiology 268: 219–228.

    Google Scholar 

  65. Mirzoeva, O.K., D. Das, L.M. Heiser, S. Bhattacharya, D. Siwak, R. Gendelman, N. Bayani, N.J. Wang, R.M. Neve, Y. Guan, Z. Hu, Z. Knight, H.S. Feiler, P. Gascard, B. Parvin, P.T. Spellman, K.M. Shokat, A.J. Wyrobek, M.J. Bissell, F. McCormick, W.L. Kuo, G.B. Mills, J.W. Gray, and W.M. Korn. 2009. Basal subtype and MAPK/ERK kinase (MEK)-phosphoinositide 3-kinase feedback signaling determine susceptibility of breast cancer cells to MEK inhibition. Cancer Resarch 69 (2): 565–572.

    Article  CAS  Google Scholar 

  66. Carracedo, A., L. Ma, J. Teruya-Feldstein, F. Rojo, L. Salmena, A. Alimonti, A. Egia, A.T. Sasaki, G. Thomas, S.C. Kozma, A. Papa, C. Nardella, L.C. Cantley, J. Baselga, and P.P. Pandolfi. 2008. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. The Journal of the Clinical Investigation 118 (9): 3065–3074.

    CAS  Google Scholar 

  67. Zhong, Lian-Mei, Yi Zong, Sun Lin, Jia-Zhi Guo, Wei Zhang, Ying He, Rui Song, Wen-Min Wang, Chun-Jie Xiao, and Lu. Di. 2012. Resveratrol ınhibits ınflammatory responses via the mammalian target of rapamycin signaling pathway in cultured LPS-stimulated microglial cells. PLoS One 7 (2): e32195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, L.J., Y.L. Xu, B. Song, H.M. Yu, G.Y. Oudit, R. Xu, Z.Z. Zhang, H.Y. Jin, Q. Chang, D.L. Zhu, and J.C. Zhong. 2016. Angiotensin-converting enzyme 2 ameliorates renal fibrosis by blocking the activation of mTOR/ERK signaling in apolipoprotein E-deficient mice. Peptides 79: 49–57.

    Article  CAS  PubMed  Google Scholar 

  69. Cuzzocrea, S., R. Di Paola, E. Mazzon, C. Crisafulli, T. Genovese, C. Muia, M. Abdelrahman, E. Esposito, and C. Thiemermann. 2007. Glycogen synthase kinase 3″ inhibition reduces the development of nonseptic shock induced by zymosan in mice. Shock 27: 97–107.

    Article  CAS  PubMed  Google Scholar 

  70. Cuzzocrea, S., B. Zingarelli, L. Sautebin, A. Rizzo, C. Crisafulli, G.M. Campo, G. Costantino, G. Calapai, F. Nava, M. Di Rosa, and A.P. Caputi. 1997. Multiple organ failure following zymosan induced peritonitis is mediated by nitric oxide. Shock 8: 268–275.

    Article  CAS  PubMed  Google Scholar 

  71. Cuzzocrea, S., R. Di Paola, E. Mazzon, N.S.A. Patel, T. Genovese, C. Muià, C. Crisafulli, A.P. Caputi, and C. Thiemermann. 2006. Erythropoietin reduces the development of nonseptic shock induced by zymosan in mice. Critical Care Medicine 34: 1168–1174.

    Article  CAS  PubMed  Google Scholar 

  72. Mainous, M.R., W. Ertel, I.H. Chaudry, and E.A. Deitch. 1995. The gut: a cytokine generating organ in systemic inflammation? Shock 4: 193–199.

    Article  CAS  PubMed  Google Scholar 

  73. Masferrer, J.L., B.S. Zweifel, P.T. Manning, S.D. Hauser, K.M. Leahy, W.G. Smith, P.C. Isakson, and K. Seibert. 1994. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proceedings of the National Academy of Sciences 91: 3228–3232.

    Article  CAS  Google Scholar 

  74. Tomlinson, A., I. Appleton, A.R. Moore, D.W. Gilroy, D. Willis, J.A. Mitchell, and D.A. Willoughby. 1994. Cyclo-oxygenase and nitric oxide synthase isoforms in rat carrageenin-induced pleurisy. British Journal of Pharmacology 113: 693–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vane, J.R., J.A. Mitchell, I. Appleton, A. Tomlison, D. Bishop-Bailey, J. Croxtall, and D.A. Willoughby. 1994. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proceedings of the National Academy of Sciences USA 91: 2046–2050.

    Article  CAS  Google Scholar 

  76. Kang, R.Y., J. Freire Moar, E. Sigal, and C.Q. Chu. 1996. Expression of cyclooxygenase-2 in human and an animal model of rheumatoid arthritis. British Journal of Rheumatology 35: 711–718.

    Article  CAS  PubMed  Google Scholar 

  77. Lundy, S.R., R.L. Dowling, T.M. Stevens, J.S. Kerr, W.M. Mackin, and K.R. Gans. 1990. Kinetics of phospholipase A2, arachidonic acid, and eicosanoid appearance in mouse zymosan peritonitis. Journal of Immunology 144: 2671–2677.

    CAS  Google Scholar 

  78. Rao, T.S., J.L. Currie, A.F. Shaffer, and P.C. Isakson. 1994. In vivo characterization of zymosan-induced mouse peritoneal inflammation. Journal of Pharmacology and Experimental Therapeutics 269: 917–925.

    CAS  PubMed  Google Scholar 

  79. Yuhki, K., F. Ushikubi, H. Naraba, A. Ueno, H. Kato, F. Kojima, S. Narumiya, Y. Sugimoto, M. Matsushita, and S. Oh-ishi. 2008. Prostaglandin I2 plays a key role in zymosan-induced mouse pleurisy. Journal of Pharmacology and Experımental Therapeutics 325: 601–609.

    Article  CAS  PubMed  Google Scholar 

  80. Kang-Birken, S.L., and J.T. Dipiro. 2008. Sepsis and septic shock. In Pharmacotherapy, ed. J.T. Dipiro, R.L. Talbert, G.C. Yee, G.R. Matzke, B.G. Wells, and L.M. Posey, 7th ed., 1943–1944. United States of America: McGraw-Hill Companies, Inc.

    Google Scholar 

  81. Tunctan, B., B. Korkmaz, A.N. Sari, M. Kacan, D. Unsal, M.S. Serin, C.K. Buharalioglu, S. Sahan-Firat, T. Cuez, W. Schunck, V.L. Manthati, J.R. Falck, and K.U. Malik. 2013. Contribution of iNOS/sGC/PKG pathway, COX-2, CYP4A1, and gp91phox to the protective effect of 5,14-HEDGE, a 20-HETE mimetic, against vasodilation, hypotension, tachycardia, and inflammation in a rat model of septic shock. Nitric Oxide 33: 18–41.

    Article  CAS  PubMed  Google Scholar 

  82. Makni-Maalej, K., M. Chiandotto, M. Hurtado-Nedelec, S. Bedouhene, M. Gougerot-Pocidalo, P. My-Chan Dang, and J. El-Benna. 2013. Zymosan induces NADPH oxidase activation in human neutrophils by inducing the phosphorylation of p47phox and the activation of Rac2: involvement of protein tyrosine kinases, PI3Kinase, PKC, ERK1/2 and p38MAPkinase. Biochemical Pharmacology 85: 92–100.

    Article  CAS  PubMed  Google Scholar 

  83. Hunt, B.J. 1998. Endothelial cell activation. British Medical Journal 316: 1328–1329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Damas, J., G. Remacle-Volon, and V. Bourdon. 1993. Platelet–activating factor and vascular effects of zymosan in rats. European Journal of Pharmacology 231: 231–236.

    Article  CAS  PubMed  Google Scholar 

  85. Mainous, M., T. Patrick, and D. Rodney. 1991. Studies of route, magnitude and time course of bacterial translocation in a model of systemic inflammation. Archives of Surgery 126: 33–39.

    Article  CAS  PubMed  Google Scholar 

  86. Bedard, K., and K.H. Krause. 2007. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiological Reviews 87: 245–313.

    Article  CAS  PubMed  Google Scholar 

  87. Esposito, E., and S. Cuzzocrea. 2009. Superoxide, NO, peroxynitrite and PARP in circulatory shock and inflammation. Frontiers in Bioscience 14: 263–296.

    Article  CAS  Google Scholar 

  88. Di Paola, R., E. Esposito, E. Mazzon, T. Genovese, C. Muia, C. Crisafulli, G. Malleo, E. Sessa, R. Meli, and S. Cuzzocrea. 2006. Absence of peroxisome proliferators-activated receptors (PPAR) alpha enhanced the multiple organ failure induced by zymosan. Shock 26: 477–484.

    Article  PubMed  Google Scholar 

  89. Cuzzocrea, S., E. Mazzon, R. Di Paola, E. Esposito, H. Macarthur, G.M. Matuschak, and D. Salvemini. 2006. A role for nitric oxide-mediated peroxynitrite formation in a model of endotoxin-induced shock. Journal of Pharmacology and Experimental Therapeutics 319: 73–81.

    Article  CAS  PubMed  Google Scholar 

  90. Bianca, R., S. d’Emmanuele di Villa Marzocco, R. Di Paola, G. Autore, A. Pinto, S. Cuzzocrea, and R. Sorrentino. 2004. Melatonin prevents lipopolysaccharide-induced hyporeactivity in rat. Journal of Pineal Research 36: 146–154.

    Article  Google Scholar 

  91. Takakura, K., W. Xiaohong, K. Takeuchi, Y. Yasuda, and S. Fukuda. 2003. Deactivation of norepinephrine by peroxynitrite as a new pathogenesis in the hypotension of septic shock. Anesthesiology 98: 928–934.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Research Fundation of Mersin University in Turkey with Project Number “2016-2-AP3-1490.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyhan Sahan-Firat.

Ethics declarations

All animal experiments were performed in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. The study protocols were approved by the Ethics Committee of Mersin University School of Medicine.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahan-Firat, S., Temiz-Resitoglu, M., Guden, D.S. et al. Protection by mTOR Inhibition on Zymosan-Induced Systemic Inflammatory Response and Oxidative/Nitrosative Stress: Contribution of mTOR/MEK1/ERK1/2/IKKβ/IκB-α/NF-κB Signalling Pathway. Inflammation 41, 276–298 (2018). https://doi.org/10.1007/s10753-017-0686-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0686-2

KEY WORDS

Navigation