Skip to main content

Advertisement

Log in

Resveratrol Protects against Titanium Particle-Induced Aseptic Loosening Through Reduction of Oxidative Stress and Inactivation of NF-κB

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Aseptic implant loosening is closely associated with chronic inflammation induced by implant wear debris, and reactive oxygen species (ROS) play an important role in this process. Resveratrol, a plant compound, has been reported to act as an antioxidant in many inflammatory conditions; however, its protective effect and mechanism against wear particle-induced oxidative stress remain unknown. In this study, we evaluated resveratrol’s protective effects against wear particle-induced oxidative stress in RAW 264.7 macrophages. At non-toxic concentrations, resveratrol showed dose-dependent inhibition of nitric oxide (NO) production, ROS generation, and lipid peroxidation. It also downregulated the gene expression of oxidative enzymes, including inducible nitric oxide synthase (iNOS) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX)-1 and NOX-2, and promoted the gene expression and activities of antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), and glutathione peroxidase (GPx). This protective effect against wear particle-induced oxidative stress was accompanied by a reduction of gene expression and release of tumor necrosis factor-α (TNF-α), and decreased gene expression and phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). These findings demonstrate that resveratrol can inhibit wear particle-induced oxidative stress in macrophages, and may exert its antioxidant effect and protect against aseptic implant loosening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thiele, K., C. Perka, G. Matziolis, H.O. Mayr, M. Sostheim, and R. Hube. 2015. Current failure mechanisms after knee arthroplasty have changed: polyethylene wear is less common in revision surgery. Journal of Bone and Joint Surgery (American) 97: 715–720.

    Article  Google Scholar 

  2. Pivec, R., A.J. Johnson, S.C. Mears, and M.A. Mont. 2012. Hip arthroplasty. Lancet 380: 1768–1777.

    Article  PubMed  Google Scholar 

  3. Yang, F., W. Wu, L. Cao, Y. Huang, Z.N. Zhu, T.T. Tang, et al. 2011. Pathways of macrophage apoptosis within the interface membrane in aseptic loosening of prostheses. Biomaterials 32: 9159–9167.

    Article  CAS  PubMed  Google Scholar 

  4. Ingham, E., and J. Fisher. 2005. The role of macrophages in osteolysis of total joint replacement. Biomaterials 26: 1271–1286.

    Article  CAS  PubMed  Google Scholar 

  5. Pajarinen, J., V.P. Kouri, E. Jamsen, T.F. Li, J. Mandelin, and Y.T. Konttinen. 2013. The response of macrophages to titanium particles is determined by macrophage polarization. Acta Biomaterialia 9: 9229–9240.

    Article  CAS  PubMed  Google Scholar 

  6. Pajarinen, J., Y. Tamaki, J.K. Antonios, T.H. Lin, T. Sato, Z.Y. Yao, et al. 2015. Modulation of mouse macrophage polarization in vitro using IL-4 delivery by osmotic pumps. Journal of Biomedical Materials Research. Part A 103: 1339–1345.

    Article  PubMed  Google Scholar 

  7. O’Neill, S.C., J.M. Queally, B.M. Devitt, P.P. Doran, and J.M. O’Byrne. 2013. The role of osteoblasts in peri-prosthetic osteolysis. Bone & Joint Journal 95B: 1022–1026.

    Article  Google Scholar 

  8. Kinov, P., A. Tzoncheva, and P. Tivchev. 2010. Evidence linking elevated oxidative stress and aseptic loosening of hip arthroplasty. Comptes rendus de l'Academie Bulgare des Sciences 63: 1231–1238.

    Google Scholar 

  9. Brown, G.C. 2001. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. BBA Bioenergetics 1504: 46–57.

    Article  CAS  PubMed  Google Scholar 

  10. Lambeth, J.D. 2004. Nox enzymes and the biology of reactive oxygen. Nature Reviews Immunology 4: 181–189.

    Article  CAS  PubMed  Google Scholar 

  11. Mates, J.M. 2001. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology (vol 153, pg 83, 2000). Toxicology 163: 219–219.

    Article  CAS  Google Scholar 

  12. Maitra, U., N. Singh, L. Gan, L. Ringwood, and L.W. Li. 2009. IRAK-1 contributes to lipopolysaccharide-induced reactive oxygen species generation in macrophages by inducing NOX-1 transcription and Rac1 activation and suppressing the expression of antioxidative enzymes. Journal of Biological Chemistry 284: 35403–35411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Steinbeck, M.J., L.J. Jablonowski, J. Parvizi, and T.A. Freeman. 2014. The role of oxidative stress in aseptic loosening of total hip arthroplasties. Journal of Arthroplasty 29: 843–849.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Suh, K.T., J.W. Chang, and J.S. Jung. 2002. The role of inducible nitric oxide synthase in aseptic loosening after total hip arthroplasty. Journal of Bone and Joint Surgery (British) 84B: 753–757.

    Article  Google Scholar 

  15. Kinov, P., A. Leithner, R. Radl, K. Bodo, G.A. Khoschsorur, K. Schauenstein, et al. 2006. Role of free radicals in aseptic loosening of hip arthroplasty. Journal of Orthopaedic Research 24: 55–62.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, W.S., Z.Q. Li, Y. Guo, Y.H. Zhou, Z.J. Zhang, Y.C. Zhang, et al. 2015. Wear particles promote reactive oxygen species-mediated inflammation via the nicotinamide adenine dinucleotide phosphate oxidase pathway in macrophages surrounding loosened implants. Cellular Physiology and Biochemistry 35: 1857–1867.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, W.S., Z.Q. Li, Y. Guo, Y.H. Zhou, Y.C. Zhang, G.T. Luo, et al. 2015. Wear particles impair antimicrobial activity via suppression of reactive oxygen species generation and ERK1/2 phosphorylation in activated macrophages. Inflammation 38: 1289–1296.

    Article  CAS  PubMed  Google Scholar 

  18. Peng, K.T., W.H. Hsu, H.N. Shih, C.W. Hsieh, T.W. Huang, R.W.W. Hsu, et al. 2011. The role of reactive oxygen species scavenging enzymes in the development of septic loosening after total hip replacement. Journal of Bone and Joint Surgery (British) 93B: 1201–1209.

    Article  Google Scholar 

  19. Hallab, N.J., and J.J. Jacobs. 2009. Biologic effects of implant debris. Bulletin of the NYU Hospital for Joint Diseases 67: 182–188.

    PubMed  Google Scholar 

  20. Raghunathan, V.K., M. Devey, S. Hawkins, L. Hails, S.A. Davis, S. Mann, et al. 2013. Influence of particle size and reactive oxygen species on cobalt chrome nanoparticle-mediated genotoxicity. Biomaterials 34: 3559–3570.

    Article  CAS  PubMed  Google Scholar 

  21. Tsaryk, R., K. Peters, S. Barth, R.E. Unger, D. Scharnweber, and C.J. Kirkpatrick. 2013. The role of oxidative stress in pro-inflammatory activation of human endothelial cells on Ti6Al4V alloy. Biomaterials 34: 8075–8085.

    Article  CAS  PubMed  Google Scholar 

  22. Samelko, L., M.S. Caicedo, S.J. Lim, C. Della-Valle, J. Jacobs, and N.J. Hallab. 2013. Cobalt-alloy implant debris induce HIF-1 alpha hypoxia associated responses: a mechanism for metal-specific orthopedic implant failure. PloS One 8(6): e67127. doi:10.1371/journal.pone.0067127.

  23. Pirola, L., and S. Frojdo. 2008. Resveratrol: one molecule, many targets. IUBMB Life 60: 323–332.

    Article  CAS  PubMed  Google Scholar 

  24. He, X., G. Andersson, U. Lindgren, and Y. Li. 2010. Resveratrol prevents RANKL-induced osteoclast differentiation of murine osteoclast progenitor RAW 264.7 cells through inhibition of ROS production. Biochemical and Biophysical Research Communications 401: 356–362.

    Article  CAS  PubMed  Google Scholar 

  25. Mizutani, K., K. Ikeda, Y. Kawai, and Y. Yamori. 2000. Resveratrol attenuates ovariectomy-induced hypertension and bone loss in stroke-prone spontaneously hypertensive rats. Journal of Nutritional Science and Vitaminology 46: 78–83.

    Article  CAS  PubMed  Google Scholar 

  26. Takagi, M., S. Santavirta, H. Ida, M. Ishii, I. Takei, S. Niissalo, et al. 2001. High-turnover periprosthetic bone remodeling and immature bone formation around loose cemented total hip joints. Journal of Bone and Mineral Research 16: 79–88.

    Article  CAS  PubMed  Google Scholar 

  27. Layoun, A., M. Samba, and M.M. Santos. 2015. Isolation of murine peritoneal macrophages to carry out gene expression analysis upon Toll-like receptors stimulation. Journal of Visualized Experiments (98): e52749. doi:10.3791/52749.

  28. Sun, Y., L.W. Oberley, and Y. Li. 1988. A simple method for clinical assay of superoxide dismutase. Clinical Chemistry 34: 497–500.

    CAS  PubMed  Google Scholar 

  29. Aebi, H. 1984. Catalase in vitro. Methods in Enzymology 105: 121–126.

    Article  CAS  PubMed  Google Scholar 

  30. Ozmen, I., and O.I. Kufrevioglu. 2004. Effects of antiemetic drugs on glucose 6-phosphate dehydrogenase and some antioxidant enzymes. Pharmacological Research 50: 499–504.

    Article  CAS  PubMed  Google Scholar 

  31. Schroder, K. 2015. NADPH oxidases in bone homeostasis and osteoporosis. Cellular and Molecular Life Sciences 72: 25–38.

    Article  PubMed  Google Scholar 

  32. Hou, Y.C., A. Janczuk, and P.G. Wang. 1999. Current trends in the development of nitric oxide donors. Current Pharmaceutical Design 5: 417–441.

    CAS  PubMed  Google Scholar 

  33. Devasagayam, T.P., J.C. Tilak, K.K. Boloor, K.S. Sane, S.S. Ghaskadbi, and R.D. Lele. 2004. Free radicals and antioxidants in human health: current status and future prospects. Journal of the Association of Physicians of India 52: 794–804.

    CAS  PubMed  Google Scholar 

  34. Chung, I.S., J.A. Kim, J.A. Kim, H.S. Choi, J.J. Lee, M. Yang, et al. 2013. Reactive oxygen species by isoflurane mediates inhibition of nuclear factor kappa B activation in lipopolysaccharide-induced acute inflammation of the lung. Anesthesia and Analgesia 116: 327–335.

    Article  CAS  PubMed  Google Scholar 

  35. Lambeth, J.D., and A.S. Neish. 2014. Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited. Annual Review of Pathology Mechanisms 9: 119–145.

    Article  CAS  Google Scholar 

  36. Deponte, M. 1830. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. BBA General Subjects 2013: 3217–3266.

    Google Scholar 

  37. Ozmen, I., M. Naziroglu, and R. Okutan. 2006. Comparative study of antioxidant enzymes in tissues surrounding implant in rabbits. Cell Biochemistry and Function 24: 275–281.

    Article  CAS  PubMed  Google Scholar 

  38. Merkel, K.D., J.M. Erdmann, K.P. McHugh, Y. Abu-Amer, F.P. Ross, and S.L. Teitelbaum. 1999. Tumor necrosis factor-alpha mediates orthopedic implant osteolysis. American Journal of Pathology 154: 203–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fuller, K., C. Murphy, B. Kirstein, S.W. Fox, and T.J. Chambers. 2002. TNFa potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology 143: 1108–1118.

    CAS  PubMed  Google Scholar 

  40. Rangasamy, T., J. Guo, W.A. Mitzner, J. Roman, A. Singh, A.D. Fryer, et al. 2005. Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. Journal of Experimental Medicine 202: 47–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schuliga, M. 2015. NF-kappa B signaling in chronic inflammatory airway disease. Biomolecules 5: 1266–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by the grants from the National Natural Science Foundation of China (no. 81171710) and the International Cooperation of Science and Technology of Guangdong Province, China (no. 2013B051000040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Guo or Puyi Sheng.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Guotian Luo and Ziqing Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, G., Li, Z., Wang, Y. et al. Resveratrol Protects against Titanium Particle-Induced Aseptic Loosening Through Reduction of Oxidative Stress and Inactivation of NF-κB. Inflammation 39, 775–785 (2016). https://doi.org/10.1007/s10753-016-0306-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0306-6

KEY WORDS

Navigation