Skip to main content

Advertisement

Log in

Treatment of Low Molecular Weight Heparin Inhibits Systemic Inflammation and Prevents Endotoxin-Induced Acute Lung Injury in Rats

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

To determine whether low molecular weight heparin (LMWH) is able to reduce pulmonary inflammation and improve the survival in rats with endotoxin-induced acute lung injury (ALI). Rat ALI model was reproduced by injection of lipopolysaccharide (LPS) into tail vein. Rats were divided randomly into three groups: control group, ALI group, LMWH-treated group. Blood was collected and lung tissue was harvested at the designated time points for analysis. The lung specimens were harvested for morphological studies, streptavidin-peroxidase immunohistochemistry examination. Lung tissue edema was evaluated by tissue water content. The levels of lung tissue myeloperoxidase (MPO) were determined. Meanwhile, the nuclear factor-kappa B (NF-κB) activation, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) levels and high mobility group box 1 (HMGB1) and intercellular adhesion molecule-1 (ICAM-1) protein levels in the lung were studied. In survival studies, a separate group of rats were treated with LMWH or sterile saline after LPS administration. Then, the mortality was recorded. Treatment with LMWH after ALI was associated with a reduction in the severity of LPS-induced lung injury. Treatment with LMWH significantly decreased the expression of TNF-α, IL-1β, HMGB1 and ICAM-1 in the lung of ALI rats. Similarly, treatment with LMWH dramatically diminished LPS-induced neutrophil sequestration and markedly reduced the enhanced lung permeability. In the present study, LMWH administration inhibited the nuclear translocation of NF-κB in the lung. Survival was significantly higher among the LMWH-treated group compared with the ALI group. These data suggest that LMWH attenuates inflammation and prevents lethality in endotoxemic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ALI:

acute lung injury

HMGB1:

high mobility group box 1

ICAM-1:

intercellular adhesion molecule-1

MPO:

myeloperoxidase

NF-κB:

nuclear factor-kappa B

TNF-α:

tumor necrosis factor-α

IL-1β:

interleukin-1β

ELISA:

enzyme-linked immunosorbent assay

References

  1. Dreyfuss, D., and G. Saumon. 1998. Ventilator-induced lung injury: lessons from experimental studies. American Journal of Respiratory and Critical Care Medicine 157: 294–323.

    Article  CAS  PubMed  Google Scholar 

  2. Ware, L.B., and M.A. Matthay. 2000. The acute respiratory distress syndrome. New England Journal of Medicine 342: 1334–1349.

    Article  CAS  PubMed  Google Scholar 

  3. Bhatia, M., and S. Moochhala. 2004. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. Journal of Pathology 202: 145–156.

    Article  CAS  PubMed  Google Scholar 

  4. Ghosh, S., R.D. Latimer, B.M. Gray, et al. 1993. Endotoxin-induced organ injury. Critical Care Medicine 21: S19–S24.

    Article  CAS  PubMed  Google Scholar 

  5. Xu, H., X. Ye, H. Steinberg, et al. 2010. Selective blockade of endothelial NF-kappaB pathway differentially affects systemic inflammation and multiple organ dysfunction and injury in septic mice. Journal of Pathology 220: 490–498.

    CAS  PubMed  Google Scholar 

  6. Bustin, M. 1999. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Molecular and Cellular Biology 19: 5237–5246.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Wang, H., O. Bloom, M. Zhang, et al. 1999. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285: 248–251.

    Article  CAS  PubMed  Google Scholar 

  8. Reiss, L.K., U. Uhlig, and S. Uhlig. 2012. Models and mechanisms of acute lung injury caused by direct insults. European Journal of Cell Biology 91: 590–601.

    Article  CAS  PubMed  Google Scholar 

  9. Kim, J.Y., J.S. Park, D. Strassheim, et al. 2005. HMGB1 contributes to the development of acute lung injury after hemorrhage. American Journal of Physiology—Lung Cellular and Molecular Physiology 288: L958–L965.

    Article  CAS  PubMed  Google Scholar 

  10. Scaffidi, P., T. Misteli, and M.E. Bianchi. 2002. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418: 191–195.

    Article  CAS  PubMed  Google Scholar 

  11. Andersson, U., H. Wang, K. Palmblad, et al. 2000. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. Journal of Experimental Medicine 192: 565–570.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Barsness, K.A., J. Arcaroli, A.H. Harken, et al. 2004. Hemorrhage-induced acute lung injury is TLR-4 dependent. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology 287: R592–R599.

    Article  CAS  PubMed  Google Scholar 

  13. Xie, K., Y. Yu, Y. Huang, et al. 2012. Molecular hydrogen ameliorates lipopolysaccharide-induced acute lung injury in mice through reducing inflammation and apoptosis. Shock 37: 548–555.

    CAS  PubMed  Google Scholar 

  14. Gong, Q., J.F. Xu, H. Yin, et al. 2009. Protective effect of antagonist of high-mobility group box 1 on lipopolysaccharide-induced acute lung injury in mice. Scandinavian Journal of Immunology 69: 29–35.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, H., J.M. Vishnubhakat, O. Bloom, et al. 1999. Proinflammatory cytokines (tumor necrosis factor and interleukin 1) stimulate release of high mobility group protein-1 by pituicytes. Surgery 126: 389–392.

    Article  CAS  PubMed  Google Scholar 

  16. Fiuza, C., M. Bustin, S. Talwar, et al. 2003. Inflammation-promoting activity of HMGB1 on human micro vascular endothelial cells. Blood 101: 2652–2660.

    Article  CAS  PubMed  Google Scholar 

  17. Park, J.S., F. Gamboni-Robertson, Q. He, et al. 2006. High Mobility Group Box 1 protein (HMGB1) interacts with multiple toll like receptors. American Journal of Physiology—Cellular Physiology 290: 917–924.

    Article  Google Scholar 

  18. Kokkola, R., A. Andersson, G. Mullins, et al. 2005. RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scandinavian Journal of Immunology 61: 1–9.

    Article  CAS  PubMed  Google Scholar 

  19. Iba, T., A. Kidokoro, and Y. Yagi. 1998. The role of the endothelium in changes in procoagulant activity. Journal of the American College of Surgeons 87: 321–329.

    Article  Google Scholar 

  20. Macfarlane, S.R., M.J. Seatter, T. Kanke, et al. 2001. Proteinase-activated receptors. Pharmacological Reviews 53: 245–282.

    CAS  PubMed  Google Scholar 

  21. Freeman, B.D., B.A. Zehnbauer, and T.G. Buchman. 2003. A meta-analysis of controlled trials of anticoagulant therapies in patients with sepsis. Shock 20: 5–9.

    Article  CAS  PubMed  Google Scholar 

  22. Matthay, M.A. 2001. Severe sepsis: a new treatment with both anticoagulant and anti-inflammatory properties. New England Journal of Medicine 344: 759–762.

    Article  CAS  PubMed  Google Scholar 

  23. Al-Ansari, E., H.K. Du, L. Yu, et al. 2007. Low molecular-weight heparin inhibits hypoxic pulmonary hypertension and vascular remodeling in guinea pigs. Chest 132: 1898–1905.

    Article  CAS  PubMed  Google Scholar 

  24. Li, L.F., C.C. Huang, H.C. Lin, et al. 2009. Unfractionated heparin and enoxaparin reduce high stretch ventilation-augmented lung injury-a prospective, controlled animal experiment. Critical Care 13: R108.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Darien, B.J., J. Fareed, K.S. Centgraf, et al. 1998. Low molecular weight heparin prevents the pulmonary hemodynamic and pathomorphologic effects of endotoxin in a porcine acute lung injury model. Shock 9: 274–281.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, C.M., H.C. Chou, L.F. Wang, et al. 2008. Captopril decreases plasminogen activator inhibitor-1 in rats with ventilatorinduced lung injury. Critical Care Medicine 36: 1880–1885.

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi, H., S. Ebihara, T. Okazaki, et al. 2005. A comparison of the effects of unfractionated heparin, dalteparin and danaparoid on vascular endothelial growth factor-induced tumour angiogenesis and heparinase activity. British Journal of Pharmacology 146: 333–343.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Murakami, K., R. McGuire, R.A. Cox, et al. 2002. Heparin nebulization attenuates acute lung injury in sepsis following smoke inhalation in sheep. Shock 18: 236–241.

    Article  PubMed  Google Scholar 

  29. Ogawa, Y., K. Yamakawa, H. Ogura, et al. 2012. Recombinant human soluble thrombomodulin improves mortality and respiratory dysfunction in patients with severe sepsis. Journal of Trauma and Acute Care Surgery 72: 1150–1157.

    CAS  PubMed  Google Scholar 

  30. McMaken, S., M.C. Exline, P. Mehta, et al. 2011. Thrombospondin-1 contributes to mortality in murine sepsis through effects on innate immunity. PLoS One 6: e19654.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Levi, Marcel, and Tom van der Poll. 2010. Inflammation and coagulation. Critical Care Medicine 38: S26–S34.

    Article  CAS  PubMed  Google Scholar 

  32. Krzyzaniak, M., G. Cheadle, C. Peterson, et al. 2011. Burn-induced acute lung injury requires a functional toll-like receptor 4. Shock 36: 24–29.

    Article  CAS  PubMed  Google Scholar 

  33. Wang, M., T. Liu, D. Wang, et al. 2011. Therapeutic effects of pyrrolidine dithiocarbamate on acute lung injury in rabbits. Journal of Translational Medicine 9: 61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Wolfson, R.K., E.T. Chiang, and J.G. Garcia. 2011. HMGB1 induces human lung endothelial cell cytoskeletal rearrangement and barrier disruption. Microvascular Research 81: 189–197.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Ueno, H., T. Matsuda, S. Hashimoto, et al. 2004. Contributions of high mobility group box protein in experimental and clinical acute lung injury. American Journal of Respiratory and Critical Care Medicine 170: 1310–1316.

    Article  PubMed  Google Scholar 

  36. Angus, D.C., L. Yang, L. Kong, et al. 2007. Circulating high-mobility group box 1 (HMGB1) concentrations are elevated in both uncomplicated pneumonia and pneumonia with severe sepsis. Critical Care Medicine 35: 1061–1067.

    Article  PubMed  Google Scholar 

  37. Courtine, E., F. Pène, N. Cagnard, et al. 2011. Critical role of cRel subunit of NF-κB in sepsis survival. Infection and Immunity 79: 1848–1854.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Zingarelli, B. 2005. Nuclear factor-kappaB. Critical Care Medicine 33: S414–S416.

    Article  PubMed  Google Scholar 

  39. Kim, B.H., E. Roh, H.Y. Lee, et al. 2008. Benzoxathiole derivative blocks lipopolysaccharide-induced nuclear factor-kappaB activation and nuclear factor-kappaB-regulated gene transcription through inactivating inhibitory kappaB kinase beta. Molecular Pharmacology 73: 1309–1318.

    Article  CAS  PubMed  Google Scholar 

  40. Ha, T., Y. Xia, X. Liu, et al. 2011. Glucan phosphate attenuates myocardial HMGB1 translocation in severe sepsis through inhibiting NF-κB activation. American Journal of Physiology—Heart and Circulatory Physiology 301: H848–H855.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Esmon, C.T. 2001. Role of coagulation inhibitors in inflammation. Thrombosis and Haemostasis 86: 51–56.

    CAS  PubMed  Google Scholar 

  42. Riewald, M., V.V. Kravchenko, R.J. Petrovan, et al. 2001. Gene induction by coagulation factor Xa is mediated by activation of protease-activated receptor 1. Blood 97: 3109–3116.

    Article  CAS  PubMed  Google Scholar 

  43. Skoutakis, V.A. 1997. Danaparoid in the prevention of thromboembolic complications. Annals of Pharmacotherapy 31: 876–887.

    CAS  PubMed  Google Scholar 

  44. Kwak, H.J., J.S. Song, J.Y. Heo, et al. 2005. Roflumilast inhibits lipopolysaccharide-induced inflammatory mediators via suppression of nuclear factor-kappaB, p38 mitogen-activated protein kinase, and c-Jun NH2-terminal kinase activation. Journal of Pharmacology and Experimental Therapeutics 315: 1188–1195.

    Article  CAS  PubMed  Google Scholar 

  45. Schottelius, A.J., M.W. Mayo, R.B. Sartor, et al. 1999. Interleukin-10 signaling blocks inhibitor of kappaB kinase activity and nuclear factor kappaB DNA binding. Journal of Biological Chemistry 274: 31868–31874.

    Article  CAS  PubMed  Google Scholar 

  46. Cavaillon, J.M., C. Marie, M. Caroff, et al. 1996. CD14/LPS receptor exhibits lectin-like properties. Journal of Endotoxin Research 3: 471–480.

    CAS  Google Scholar 

  47. Anastase-Ravion, S., C. Blondin, B. Cholley, et al. 2003. Heparin inhibits lipopolysaccharide (LPS) binding to leukocytes and LPS-induced cytokine production. Journal of Biomedical Materials Research. Part A 66: 376–384.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Nan Liu (Center of Laboratory Technology and Experimental Medicine; China Medical University) for expert technical support. This work was supported by the National Natural Science Foundation of China (No. 30901438).

Conflicts of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Gang Luan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luan, ZG., Naranpurev, M. & Ma, XC. Treatment of Low Molecular Weight Heparin Inhibits Systemic Inflammation and Prevents Endotoxin-Induced Acute Lung Injury in Rats. Inflammation 37, 924–932 (2014). https://doi.org/10.1007/s10753-014-9812-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-9812-6

KEY WORDS

Navigation