Skip to main content
Log in

Protective Effect of Kaempferol on LPS plus ATP-Induced Inflammatory Response in Cardiac Fibroblasts

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Inflammatory response is an important mechanism in the pathogenesis of cardiovascular diseases. Cardiac fibroblasts play a crucial role in cardiac inflammation and might become a potential therapeutic target in cardiovascular diseases. Kaempferol, a flavonoid commonly existing in many edible fruits, vegetables, and Chinese herbs, is well known to possess anti-inflammatory property and thus has a therapeutic potential for the treatment of inflammatory diseases. To date, the effect of kaempferol on cardiac fibroblasts inflammation is unknown. In this study, we investigated the anti-inflammatory effect of kaempferol on lipopolysaccharide (LPS) plus ATP-induced cardiac fibroblasts and explored the underlying mechanisms. Our results showed that kaempferol at concentrations of 12.5 and 25 μg/mL significantly suppressed the release of TNF-α, IL-1β, IL-6, and IL-18 and inhibited activation of NF-κB and Akt in LPS plus ATP-induced cardiac fibroblasts. These findings suggest that kaempferol attenuates cardiac fibroblast inflammation through suppression of activation of NF-κB and Akt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bartunek, J., and M. Vanderheyden. 2012. Inflammation and related biomarkers in cardiovascular disease. Biomarkers in Medicine 6: 1–3.

    Article  PubMed  Google Scholar 

  2. Grundmann, S., C. Bode, and M. Moser. 2011. Inflammasome activation in reperfusion injury: friendly fire on myocardial infarction? Circulation 123: 574–576.

    Article  PubMed  Google Scholar 

  3. Lindner, D., C. Zietsch, J. Tank, S. Sossalla, N. Fluschnik, S. Hinrichs, L. Maier, W. Poller, S. Blankenberg, H.P. Schultheiss, C. Tschöpe, and D. Westermann. 2014. Cardiac fibroblasts support cardiac inflammation in heart failure. Basic Research in Cardiology 109: 428. doi:10.1007/s00395-014-0428-7.

    Article  PubMed  Google Scholar 

  4. Shinde, A.V., and N.G. Frangogiannis. 2014. Fibroblasts in myocardial infarction: a role in inflammation and repair. Journal of Molecular and Cellular Cardiology 70: 74–82.

    Article  CAS  PubMed  Google Scholar 

  5. Kawaguchi, M., M. Takahashi, T. Hata, Y. Kashima, F. Usui, H. Morimoto, A. Izawa, Y. Takahashi, J. Masumoto, J. Koyama, M. Hongo, T. Noda, J. Nakayama, J. Sagara, S. Taniguchi, and U. Ikeda. 2011. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123: 594–604.

    Article  CAS  PubMed  Google Scholar 

  6. Sandanger, Ø., T. Ranheim, L.E. Vinge, M. Bliksøen, K. Alfsnes, A.V. Finsen, C.P. Dahl, E.T. Askevold, G. Florholmen, G. Christensen, K.A. Fitzgerald, E. Lien, G. Valen, T. Espevik, P. Aukrust, and A. Yndestad. 2013. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischemia-reperfusion injury. Cardiovascular Research 99: 164–174.

    Article  CAS  PubMed  Google Scholar 

  7. Calderón-Montaño, J.M., E. Burgos-Morón, C. Pérez-Guerrero, and M. López-Lázaro. 2011. A review on the dietary flavonoid kaempferol. Mini Reviews in Medicinal Chemistry 11: 298–344.

    Article  PubMed  Google Scholar 

  8. Tang, X.L., J.X. Liu, W. Dong, P. Li, L. Li, C.R. Lin, Y.Q. Zheng, J.C. Hou, and D. Li. 2013. The cardioprotective effects of citric acid and L-malic acid on myocardial ischemia/reperfusion injury. Evidence-based Complementary and Alternative Medicine. doi:10.1155/2013/820695.

    Google Scholar 

  9. Lin, M.K., Y.L. Yu, K.C. Chen, W.T. Chang, M.S. Lee, M.J. Yang, H.C. Cheng, C.H. Liu, Dz.C. Chen, and C.L. Chu. 2011. Kaempferol from semen cuscutae attenuates the immune function of dendritic cells. Immunobiology 216: 1103–1109.

    Article  CAS  PubMed  Google Scholar 

  10. An, G.H., J. Gallegos, and M.E. Morris. 2011. The bioflavonoid kaempferol is an Abcg2 substrate and inhibits Abcg2-mediated quercetin efflux. Drug Metabolism and Disposition 39: 426–432.

    Article  CAS  PubMed  Google Scholar 

  11. Kim, H.P., K.H. Son, H.W. Chang, and S.S. Kang. 2004. Anti-inflammatory plant flavonoids and cellular action mechanisms. Journal of Pharmacological Sciences 96: 229–245.

    Article  CAS  PubMed  Google Scholar 

  12. Park, S.E., K. Sapkota, S. Kim, H. Kim, and S.J. Kim. 2011. Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. British Journal of Pharmacology 164: 1008–1025.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Chen, X.J., X.F. Yang, T.J. Liu, M.F. Guan, X.R. Feng, W. Dong, X. Chu, J. Liu, X.L. Tian, X.X. Ci, H.Y. Li, J.Y. Wei, Y.H. Deng, X.M. Deng, G.F. Chi, and Z.L. Sun. 2012. Kaempferol regulates MAPKs and NF-κB signaling pathways to attenuate LPS-induced acute lung injury in mice. International Immunopharmacology 14: 209–216.

    Article  CAS  PubMed  Google Scholar 

  14. Cao, R.F., K.Q. Fu, X.P. Lv, W.S. Li, and N.S. Zhang. 2014. Protective effects of kaempferol on lipopolysaccharide-induced mastitis in mice. Inflammation. doi:10.1007/s10753-014-9870-9.

    Google Scholar 

  15. Lee, W.S., E.G. Lee, M.S. Sung, and W.H. Yoo. 2014. Kaempferol inhibits IL-1β-stimulated, RANKL-mediated osteoclastogenesis via downregulation of MAPKs, c-Fos, and NFATc1. Inflammation. doi:10.1007/s10753-014-9849-6.

    Google Scholar 

  16. Kuruvilla, L., and C.C. Kartha. 2009. Treatment with TNF-α or bacterial lipopolysaccharide attenuates endocardial endothelial cell-mediated stimulation of cardiac fibroblasts. Journal of Biomedical Science 16. doi: 10.1186/1423-0127-16-21

  17. Chen, K., D.Y. Li, X.J. Zhang, P.L. Hermonat, and J.L. Mehta. 2012. Anoxia-reoxygenation stimulates collagen type-I and MMP-1 expression in cardiac fibroblasts modulation by the PPAR-γ ligand pioglitazone. Journal of Cardiovascular Pharmacology 44: 682–687.

    Article  Google Scholar 

  18. Mitchell, M.D., R.E. Laird, R.D. Brown, and C.S. Long. 2007. IL-1beta stimulates rat cardiac fibroblast migration via MAP kinase pathways. American Journal of Physiology - Heart and Circulatory Physiology 292: H1139–1147.

    Article  CAS  PubMed  Google Scholar 

  19. Gong, Y.N., X.M. Wang, J.Y. Wang, Z.X. Yang, S. Li, J.L. Yang, L.P. Liu, X.G. Lei, and F. Shao. 2010. Chemical probing reveals insights into the signaling mechanism of inflammasome activation. Cell Research 20: 1289–1305.

    Article  CAS  PubMed  Google Scholar 

  20. Colomar, A., V. Marty, C. Médina, C. Combe, P. Parnet, and T. Amédée. 2003. Maturation and release of interleukin-1beta by lipopolysaccharide-primed mouse Schwann cells require the stimulation of P2X7 receptors. Journal of Biological Chemistry 278: 30732–30740.

    Article  CAS  PubMed  Google Scholar 

  21. Kumar, A., Y. Takada, A.M. Boriek, and B.B. Aggarwal. 2004. Nuclear factor-κB: its role in health and disease. Journal of Molecular Medicine (Berlin) 82: 434–448.

    Article  CAS  Google Scholar 

  22. Bai, D., L. Ueno, and P.K. Vogt. 2009. Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt. International Journal of Cancer 125: 2863–2870.

    Article  CAS  Google Scholar 

  23. Madrid, L.V., M.W. Mayo, J.Y. Reuther, and A.S. Baldwin Jr. 2001. Akt stimulates the transactivation potential of the RelA/p65 subunit of NF-κB through utilization of the IκB kinase and activation of the mitogen-activated protein kinase p38. Journal of Biological Chemistry 276: 18934–18940.

    Article  CAS  PubMed  Google Scholar 

  24. Saxena, A., W. Chen, Y. Su, V. Rai, O.U. Uche, N. Li, and N.G. Frangogiannis. 2013. IL-1 induces proinflammatory leukocyte infiltration and regulates fibroblast phenotype in the infarcted myocardium. Journal of Immunology 191: 4838–4848.

    Article  CAS  Google Scholar 

  25. Chen, W., and N.G. Frangogiannis. 2013. Fibroblasts in post-infarction inflammation and cardiac repair. Biochimica et Biophysica Acta 1833: 945–953.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Vermeulen, L., G. De Wilde, P. Van Damme, W. Vanden Berghe, and G. Haegeman. 2003. Transcriptional activation of the NF-kappaB p65 subunit by mitogen-and stress-activated protein kinase-1 (MSK1). The EMBO Journal 22: 1313–1324.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lee, Y.Y., J.S. Park, J.S. Jung, D.H. Kim, and H.S. Kim. 2013. Anti-inflammatory effect of Ginsenoside Rg5 in lipopolysaccharide-stimulated BV2 microglial cells. International Journal of Molecular Sciences 14: 9820–9833.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Zhu, J.Y., L. Jiang, Y.Q. Liu, W.Y. Qian, J.L. Liu, J. Zhou, R. Gao, H. Xiao, and J. Wang. 2014. MAPK and NF-κB pathways are involved in bisphenol A-induced TNF-α and IL-6 production in BV2 microglial cells. Inflammation. doi:10.1007/s10753-014-9971-5.

    PubMed Central  Google Scholar 

  29. Li, G.F., J.H. Fu, Y. Zhao, K.Q. Ji, T. Luan, and B. Zang. 2014. Alpha-lipoic acid exerts anti-inflammatory effects on lipopolysaccharide-stimulated rat mesangial cells via inhibition of nuclear factor Kappa B (NF-κB) signaling pathway. Inflammation. doi:10.1007/s10753-014-9957-3.

    Google Scholar 

  30. Nagamatsu, Y., M. Nishida, N. Onohara, M. Fukutomi, Y. Maruyama, H. Kobayashi, Y. Sato, and H. Kurose. 2006. Heterotrimeric G protein G alpha13-induced induction of cytokine mRNAs through two distinct pathways in cardiac fibroblasts. Journal of Pharmacological Sciences 101: 144–150.

    Article  PubMed  Google Scholar 

  31. Yasuda, T. 2011. Hyaluronan inhibits Akt, leading to nuclear factor-κB down-regulation in lipopolysaccharide-stimulated U937 macrophages. Journal of Pharmacological Sciences 115: 509–515.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Natural Science Foundation of China (Grant Nos. 81073085; 81001662) and the National Science and Technology Major Project of China (Grant Nos. 2012zx09301002-004-002; 2012zx09103201-049).

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-xun Liu.

ELECTRONIC SUPPLEMENTARY MATERIAL

Below is the link to the electronic supplementary material.

ESM 1

Cardiac fibroblasts were stimulated with LPS (100 ng/mL, 3 h) followed by ATP (5 mmol/L) during the indicated time. The IL-1β level of the culture supernatants was measured by ELISA kit. Data are shown as means ± SEM (n = 3) (TIFF 472 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Xl., Liu, Jx., Dong, W. et al. Protective Effect of Kaempferol on LPS plus ATP-Induced Inflammatory Response in Cardiac Fibroblasts. Inflammation 38, 94–101 (2015). https://doi.org/10.1007/s10753-014-0011-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-0011-2

KEY WORDS

Navigation