Skip to main content
Log in

Resistin Up-Regulates COX-2 Expression via TAK1-IKK-NF-κB Signaling Pathway

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The hormone resistin, which was originally shown to induce insulin resistance, has been implicated in the regulation of inflammatory processes, but the molecular mechanism underlying such regulation has not been clearly defined. The goal of our study was to determine whether the expression of COX-2 can be induced by resistin and what the potential signaling pathway involved in this process is. Compared with controls, resistin significantly upregulated COX-2 expression in RAW264.7 macrophage cells. Administration of anti-resistin antibody could significantly reduce this effect. Induction of COX-2 by resistin was also markedly reduced in the presence of either dominant negative mutant IκBα or PDTC, a pharmacological inhibitor of NF-κB. On the other hand, NF-κB subunit p65 was upregulated by resistin. Moreover, we found that transforming growth factor-β-activated kinase 1 (TAK1), a mitogen-activated protein kinase kinase kinase (MAPKKK), could be activated in response to resistin. These results suggest that resistin enhances COX-2 expression in mouse macrophage cells in a TAK1-IKK-NF-κB-dependent manner and therefore plays a critical role in inflammatory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Holcomb, I. N. 2000. FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family. EMBO J. 19:4046–4055.

    Article  CAS  PubMed  Google Scholar 

  2. Steppan, C. M. 2001. The hormone resistin links obesity to diabetes. Nature. 409:307–312.

    Article  CAS  PubMed  Google Scholar 

  3. Kim, K. H., K. Lee, Y. S. Moon, and H. S. Sul. 2001. A cysteinerich adipose tissue-specific secretory factor inhibits adipocyte differentiation. J. Biol. Chem. 276:11252–11256.

    Article  CAS  PubMed  Google Scholar 

  4. Kusminski, C. M., P. G. McTernan, and S. Kumar. 2005. Role of resistin in obesity, insulin resistance and Type II diabetes. Clin. Sci. (Lond). 109:243–256.

    Article  CAS  Google Scholar 

  5. Rajala, M. W., S. Obici, P. E. Scherer, and L. Rossetti. 2003. Adipose-derived resistin and gutderived resistin-like molecule-beta selectively impair insulin action on glucose production. J. Clin. Invest. 111:225–230.

    CAS  PubMed  Google Scholar 

  6. Muse, E. D., S. Obici, and S. Bhanot. 2004. Role of resistin in diet-induced hepatic insulin resistance. J. Clin. Invest. 114:232–239.

    CAS  PubMed  Google Scholar 

  7. Banerjee, R. R., S. M. Rangwala, and J. S. Shapiro. 2004. Regulation of fasted blood glucose by resistin. Science. 303:1195–1198.

    Article  CAS  PubMed  Google Scholar 

  8. Rangwala, S. M., A. S. Rich, and B. Rhoades. 2004. Abnormal glucose homeostasis due to chronic hyperresistinemia. Diabetes. 53:1937–1941.

    Article  CAS  PubMed  Google Scholar 

  9. Pravenec, M., L. Kazdova, and V. Landa. 2003. Transgenic and recombinant resistin impair skeletal muscle glucose metabolism in the spontaneously hypertensive rat. J. Biol. Chem. 278:45209–45215.

    Article  CAS  PubMed  Google Scholar 

  10. Satoh, H., M. T. Nguyen, and P. D. Miles. 2004. Adenovirus-mediated chronic “hyperresistinemia” leads to in vivo insulin resistance in normal rats. J. Clin. Invest. 114:224–231.

    CAS  PubMed  Google Scholar 

  11. Kaser, S., A. Kaser, and A. Sandhofer. 2003. Resistin messenger-RNA expression is increased by proinflammatory cytokines in vitro. Biochem. Biophys. Res. Commun. 309:286–290.

    Article  CAS  PubMed  Google Scholar 

  12. Stejskal, D., S. Adamovska, and J. Bartek. 2003. Resistin: concentrations in persons with type 2 diabetes mellitus and in individuals with acute inflammatory disease. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech Repub. 147:63–69.

    CAS  PubMed  Google Scholar 

  13. Shetty, G. K., P. A. Economides, and E. S. Horton. 2004. Circulating adiponectin and resistin levels in relation to metabolic factors, inflammatory markers, and vascular reactivity in diabetic patients and subjects at risk for diabetes. Diabetes Care. 27:2450–2457.

    Article  CAS  PubMed  Google Scholar 

  14. Bo, S., R. Gambino, and A. Pagani. 2005. Relationships between human serum resistin, inflammatory markers and insulin resistance. Int. J. Obes. Rel. Metab. Dis. 29:1315–1320.

    Article  CAS  Google Scholar 

  15. Al-Daghri, N., R. Chetty, and P. G. McTernan. 2005. Serum resistin is associated with c-reactive protein and LDL cholesterol in type 2 diabetes and coronary artery disease in a Saudi population. Cardiovas. Diab. 4(1):10.

    Article  CAS  Google Scholar 

  16. Silswal, N., A. K. Singh, and B. Aruna. 2005. Human resistin stimulates the proinflammatory cytokines TNF-alpha and IL-12 in macrophages by NFkappaB-dependent pathway. Biochem. Biophys. Res. Commun. 334:1092–1101.

    Article  CAS  PubMed  Google Scholar 

  17. Bokarewa, M., I. Nagaev, and L. Dahlberg. 2005. Resistin, an adipokine with potent pro-inflammatory properties. J. Immunol. 174:5789–5795.

    CAS  PubMed  Google Scholar 

  18. Konrad, A. 2007. Resistin is an inflammatory marker of inflammatory bowel disease in humans. Eur. J. Gastroenterol. Hepatol. 19:1070–1074.

    Article  CAS  PubMed  Google Scholar 

  19. Sunden-Cullberg, J. 2007. Pronounced elevation of resistin correlates with severity of disease in severe sepsis and septic shock. Crit. Care Med. 35:1536–1542.

    Article  CAS  PubMed  Google Scholar 

  20. Daiji, K., and M. Koji. 2004. Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine–endothelial cell interactions. Biochem. Biophys. Res. Commun. 314:415–419.

    Article  CAS  Google Scholar 

  21. Grosser, T., S. Fries, and G. A. FitzGerald. 2006. Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J. Clin. Invest. 116:4–15.

    Article  CAS  PubMed  Google Scholar 

  22. Mitchell, J. A., and T. D. Warner. 2006. COX isoforms in the cardiovascular system: understanding the activities of non-steroidal anti-inflammatory drugs. Nat. Rev. Drug Dis. 5:75–86.

    Article  CAS  Google Scholar 

  23. Smith, W. L., R. M. Garavito, and D. L. DeWitt. 1996. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J. Biol. Chem. 271:33157–33160.

    Article  CAS  PubMed  Google Scholar 

  24. Siegle, I., and T. Klein. 1998. Expression of cyclooxygenase 1 and cyclooxygenase 2 in human synovial tissue: differential elevation of cyclooxygenase 2 in inflammatory joint diseases. Arthritis Rheum. 41:122–129.

    Article  CAS  PubMed  Google Scholar 

  25. Wu, D., M. Marko, K. Claycombe, K. E. Paulsonand, and S. N. Meydani. 2003. Ceramide-induced and age-associated increase in macrophage COX-2 expression is mediated through up-regulation of NF-kappa B activity. J. Biol. Chem. 278:10983–10992.

    Article  CAS  PubMed  Google Scholar 

  26. Migita, K., Y. Maeda, and T. Miyashita. 2006. The serum levels of resistin in rheumatoid arthritis patients. Clin. Exp. Rheumatol. 24:698–701.

    CAS  PubMed  Google Scholar 

  27. Senolt, L., D. Housa, and Z. Vernerová. 2007. Resistin in rheumatoid arthritis synovial tissue, synovial fluid and serum. Ann. Rheum. Dis. 66:458–463.

    Article  CAS  PubMed  Google Scholar 

  28. Yun, H. R., S. O. Lee, and E. J. Choi. 2008. Cyclooxygenase-2 polymorphisms and risk of rheumatoid arthritis in Koreans. J. Rheumatol. 35:763–769.

    CAS  PubMed  Google Scholar 

  29. Verma, I. M., J. K. Stevenson, E. M. Schwarz, D. Van Antwerp, and S. Miyamoto. 1995. Rel/NF-kappa B/I kappa B Family: intimate tales of association and dissociation. Genes and Dev. 9:2723–2735.

    Article  CAS  PubMed  Google Scholar 

  30. Chen, F. E., and G. Ghosh. 1999. Regulation of DNA binding by Rel/NFkappaB transcription factors: structural views. Oncogene. 18:6845–6851.

    Article  CAS  PubMed  Google Scholar 

  31. Ninomiya-Tsuji, J., K. Kishimoto, A. Hiyama, J. Inoue, Z. Cao, and K. Matsumoto. 1999. The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature. 398:252–256.

    Article  CAS  PubMed  Google Scholar 

  32. Sakurai, H., N. Shigemori, K. Hasegawa, and T. Sugita. 1998. TGF-beta-activated kinase 1 stimulates NF-kappa B activation by an NF-kappa B-inducing kinase-independent mechanism. Biochem. Biophys. Res. Commun. 243:545–549.

    Article  CAS  PubMed  Google Scholar 

  33. Sakurai, H., H. Miyoshi, W. Toriumi, and T. Sugita. 1999. Functional interactions of transforming growth factor beta-activated kinase 1 with IkappaB kinases to stimulate NF-kappaB activation. J. Biol. Chem. 274:10641–10648.

    Article  CAS  PubMed  Google Scholar 

  34. Singhirunnusorn, P., S. Suzuki, and N. Kawasaki. 2005. Critical roles of threonine 187 phosphorylation in cellular stress-induced rapid and transient activation of transforming growth factor-β-activated kinase 1 (TAK1) in a signaling complex containing TAK1-binding protein TAB1 and TAB2. J. Biol. Chem. 280:7359–7368.

    Article  CAS  PubMed  Google Scholar 

  35. Myers, M. G., M. A. Cowley, and H. Munzberg. 2008. Mechanisms of leptin action and leptin resistance. Annu. Rev. Physiol. 70:537–556.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from Major Projects of National Science and Technology (2009ZX08009-151B), 973 (2006CB102100) Programme, 863 Programme (2008AA10Z134, 2006AA10Z140), High Education Doctorial Subject Research Programme (20060504016), General Programme (30771585, 30970356) and Key Programme of National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaiqing Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Lei, T., Chen, X. et al. Resistin Up-Regulates COX-2 Expression via TAK1-IKK-NF-κB Signaling Pathway. Inflammation 33, 25–33 (2010). https://doi.org/10.1007/s10753-009-9155-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-009-9155-x

KEY WORDS

Navigation