Skip to main content
Log in

57Fe Mössbauer study of CoCrxFe2-xO4 nano ferrite

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

We report sol gel auto-combustion synthesized CoCrxFe2-xO4 (x = 0.0 − 1.0) spinel ferrites, and use x-ray diffraction ‘XRD’, magnetic measurements, and Mössbauer spectroscopy to study the effect of Cr-content on their structural properties, magnetic properties, and correlation between them. Formation of single-phase nono spinel ferrite (grain size: 18.1 – 46.6 nm), is confirmed by XRD. Results show that with increasing Cr-content, lattice parameter decreases, and Cr3+ ions remain more populated on B-site, whereas Co2+ ions remains almost equally populated on both A, B site, show lower disorder, and modification of A–O − A, B– O − B, A–O − B super-exchange interaction. For Cr-content ≥ 0.75, Mössbauer measurements show presence of a non-magnetic doublet, and isomer shift values confirm that Fe has 3 + oxidation state. Observed structural changes, lead to reduction of saturation magnetization, coercivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Willard, M.A., Kurihara, L.K., Carpenter, E.E., Calvin, S., Harris, V.G.: Chemically prepared magnetic nanoparticles. Int. Mater. Rev. 49, 125–170 (2004)

    Article  Google Scholar 

  2. Smit, J., Wijn, H.P.J.: Ferrites Philips, p. 137. Eindhoven, Technical Library (1959)

    Google Scholar 

  3. Krieble, K., Lo, C.C.H., Melikhov, Y., Snyder, J.E.: Investigation of Cr substitution in Co ferrite CoCrxFe2−xO4 using Mössbauer spectroscopy. J. Appl. Phys. 99, 08M912-1-08M912-3 (2006)

    Article  Google Scholar 

  4. Sijo, A.K.: Magnetic and structural properties of CoCrxFe2−xO4 spinels prepared by solution self combustion method. Ceram. Int. 43, 2288–2290 (2017)

    Article  Google Scholar 

  5. Zhang, W., Zuo, X., Niu, Y., Wu, C., Wang, S., Gun, S., Silva, S.R.P.: Novel nanoparticles with Cr3+ substituted ferrite for self-regulating temperature hyperthermia. Nanoscale 9, 13929–13937 (2017)

    Article  Google Scholar 

  6. Vucinic-Vasic, M., Bozin, E.S., Bessais, L., Stojanovic, G., Kozmidis-Luburic, U., Abeykoon, M., Jancar, B., Meden, A., Kremenovic, A., Antic, B.: Thermal Evolution of Cation Distribution/Crystallite Size and Their Correlation with the Magnetic State of Yb-Substituted Zinc Ferrite Nanoparticles. J. Phys. Chem. C 117, 12358–12365 (2013)

    Article  Google Scholar 

  7. Lin, J., Zhang, J., Sun, H., Lin, Q., Guo, Z., Yang, H., He, Yun: Structural and magnetic property of Cr3+ substituted cobalt ferrite nanomaterials prepared by the sol-gel method. Materials 11, 2095-1-2095–11 (2018)

    ADS  Google Scholar 

  8. Raghuvanshi, S., Mazaleyrat, F., Kane, S.N.: Mg1-xZnxFe2O4 nanoparticles: Interplay between cation distribution and magnetic properties. AIP Adv. 8, 047804–1-047804–11 (2018)

    Article  Google Scholar 

  9. Raghuvanshi, S., Tiwari, P., Kane, S.N., Avasthi, D.K., Mazaleyrat, F., Tatarchuk, T., Mironyuk, I.: Dual control on structure and magnetic properties of Mg ferrite: Role of swift heavy ion irradiation. J. Magn. Magn. Mater. 47, 521–528 (2019)

    Article  ADS  Google Scholar 

  10. Tiwari, P., Kane, S.N., Deshpande, U.P., Tatarchuk, T., Mazaleyrat, F., Rachiy, B.: Cr content-dependent modification of structural, magnetic properties and bandgap in green synthesized Co–Cr nano-ferrites. Mol. Cryst. Liq. Cryst. 699, 39–50 (2020)

    Article  Google Scholar 

  11. Verma, R., Kane, S.N., Deshpande, U.P., Mazaleyrat, F.: Impact of Cd content on properties of Ni1-xCdxFe2O4 nanoferrites prepared without post-preparation thermal treatment. Mater. Today: Proc. 46, 2205–2211 (2021)

    Google Scholar 

  12. Tiwari, P., Kane, S.N., Verma, R., Mazaleyrat, F.: Synthesis, structural and magnetic properties of CoCrxFe2-rite. AIP Conf. Proc. 2142, 160016–1-160016-5 (2019)

    Google Scholar 

  13. Sawatzky, G.A., Van Der Woude, F., Morrish, A.H.: Mössbauer Study of Several Ferrimagnetic Spinels. Phys. Rev. 187, 747–757 (1969)

    Article  ADS  Google Scholar 

  14. Cedeño-Mattei, Y., Perales-Pérez, O., Uwakweh, O.N.C., Xin, Y.: Colossal room-temperature coercivity in size-selected cobalt ferrite nanocrystals. J. Appl. Phys. 107, 09A741-1-09A741-3 (2010)

    Article  Google Scholar 

  15. Na, H.B., Song, I.C., Hyeon, T.: Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 21, 2133–2148 (2009)

    Article  Google Scholar 

  16. Ahmad, T., Rhee, I., Hong, S., Chang, Y., Lee, J.: NiFe2O4 nanoparticles as contrast agents for magnetic resonance imaging. J. Nanosci. Nanotech. 11, 5645–5650 (2011)

    Article  Google Scholar 

  17. Kharabe, R.G., Devan, R.S., Kanamadi, C.M., Chougule, B.K.: Dielectric properties of mixed Li-Ni-Cd ferrites. Smart Mater. Struct. 15, N36–N39 (2006)

    Article  Google Scholar 

  18. Melikhov, Y., Snyder, J.E., Lo, C.C.H., Matlage, P.N., Song, S.H., Dennis, K.W., Jiles, D.C.: The effect of Cr-substitution on the magnetic anisotropy and its temperature dependence in Cr-substituted cobalt ferrite. IEEE Trans. Magn. 42, 2861–2863 (2006)

    Article  ADS  Google Scholar 

  19. Panda, R.K., Muduli, R., Jayarao, G., Sanyal, D., Behera, D.: Effect of Cr3+ substitution on electric and magnetic properties of cobalt ferrite nanoparticles. J. Alloys Comp. 669, 19–28 (2016)

    Article  Google Scholar 

  20. Lutterotti, L., Scardi, P.: Simultaneous structure and size-strain refinement by the Rietveld method. J. Appl. Cryst. 23, 246–252 (1990)

    Article  Google Scholar 

  21. Bertaut, E. F. Hebdomadaires C. R.: des Séances de l’Academie des Sciences 230, 213–215 (1950)

  22. Brand, R.A.: Improving the validity of hyperfine field distributions from magnetic alloys: Part I: Unpolarized source. Nucl. Instrum. Methods B 28, 398–416 (1987). https://doi.org/10.1016/0168-583X(87)90182-0

    Article  ADS  Google Scholar 

  23. Vollath, D.: Nanoparticles – Nanocomposites –Nanomaterials An Introduction for Beginners, p. 30. Wiley-VCH Verlag, Weinheim (2013)

    Google Scholar 

  24. Karansky, V.V., Klimov, A.S., Smirnov, S.V.: Structural transformations in Mn–Zn ferrite under low-energy electron beam treatment. Vacuum 173, 109115-1-109115–6 (2020)

    Article  ADS  Google Scholar 

  25. Kolhatkar, A.G., Jamison, A.C., Litvinov, D., Willson, R.C., Randall Lee, T.: Tuning the Magnetic Properties of Nanoparticles. Int. J. Mol. Sci. 14, 15977–16009 (2013)

    Article  Google Scholar 

  26. Néel, L.: Aimantation à saturation des ferrites mixtes de Nickel et de Zinc. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences 230, 375–377 (1950)

    Google Scholar 

  27. Kane, S.N., Tiwari, P., Deepti, Verma, R., Deshpande, U.P., Mazaleyrat, F.: Study of structural, magnetic properties and bandgap of spinel Co1-xFe2+xO4 ferrite. Mater. Today Proc. 32, 358–364 (2020)

    Article  Google Scholar 

  28. Shirsath, S.E., Toksha, B.G., Jadhav, K.M.: Structural and magnetic properties of In3+ substituted NiFe2O4. Mater. Chem. Phys. 117, 163–168 (2009)

    Article  Google Scholar 

  29. Da Silva, S.W., Nakagomi, F., Silva, M.S., Franco, A., Garg, V.K., Oliveira, A.C., Morais, P.C.: Effect of the Zn content in the structural and magnetic properties of ZnxMg1−xFe2O4 mixed ferrites monitored by Raman and Mössbauer spectroscopies. J. Appl. Phys. 107, 09B503-1-09B503-3 (2010)

    Google Scholar 

  30. Krieble, K., Schaeffer, T., Paulsen, J.A., Ring, A.P., Lo, C.C.H., Snyder, J.E.: Mössbauer spectroscopy investigation of Mn-substituted Co-ferrite, CoMnxFe2−xO4. J. Appl. Phys. 97, 10F101-1-10F101-3 (2005)

    Article  Google Scholar 

  31. Sawatzky, G.A., Van Der Woude, F., Morrish, H.: Cation Distributions in Octahedral and Tetrahedral Sites of the Ferrimagnetic Spinel CoFe2O4. J. Appl. Phys. 39, 1204–1206 (1968)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. M. Gupta UGC-DAE CSR, Indore, for doing XRD measurements on the studied samples. SNK acknowledges gratefully for one month ‘Invited Professor’ stay at ENS Paris-Saclay, Cachan (France) during June 2018.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

P. Tiwari: Preparation of samples, XRD data analysis, R. Verma: Preparation of samples, Rietveld refinement of XRD data, S. S. Modak: XRD data analysis, V. R. Reddy: Mössbauer characterization, data analysis, writing manuscript, F. Mazaleyrat: Magnetic characterization, data analysis, writing manuscript. S. N. Kane: Conceptualization, Supervision, Resources, preparation of samples, data analysis, writing manuscript. All authors have read and agreed to the submitted version of the manuscript.

Corresponding author

Correspondence to S. N. Kane.

Ethics declarations

Consent for publication

All authors give their consent for publication of the current manuscript.

Conflict of interests/Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2021), 5-10 September 2021, Brasov, Romania

Edited by Victor Kuncser

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, P., Verma, R., Modak, S.S. et al. 57Fe Mössbauer study of CoCrxFe2-xO4 nano ferrite. Hyperfine Interact 242, 51 (2021). https://doi.org/10.1007/s10751-021-01781-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-021-01781-z

Keywords

Navigation