Skip to main content
Log in

Laser spectroscopy methods for probing highly charged ions at GSI

Test of QED in strong fields: status and perspectives

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

We describe two opposite and partly complementary experimental approaches for performing high-precision laser spectroscopy of dipole-forbidden transitions in highly charged ions. We report on the wavelength determination of the ground state hyperfine transitions in hydrogen-like and lithium-like bismuth ions confined in the experimental storage ring at GSI. Direct comparison of the experimental results with theoretical predictions reveals an agreement of the specific hyperfine-structure splitting difference \(\Delta ^{\prime }E\) within the 1- σ confidence interval of the experimental value. Additionally, we discuss an experimental strategy based on ion manipulation and cooling in a cylindrical open-endcap Penning trap to further increase the precision of the previous measurement. Trapping and laser cooling of external produced singly charged magnesium ions is demonstrated. This represents a first step towards sympathetic cooling of simultaneously confined ion species in order to perform laser spectroscopy measurements on highly charged ions nearly at rest. These measurements will offer new prospects in the field of laser-based tests of quantum electrodynamics in strong electric and magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hanneke, D., Fogwell, S., Gabrielse, G.: New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100, 120801 (2008)

    Article  ADS  Google Scholar 

  2. Bouchendira, R., Clade, P., Guellati-Khelifa, S., Nez, F., Biraben, F.: New determination of the fine structure constant and test of the quantum electrodynamics. Phys. Rev. Lett. 106, 080801 (2011)

    Article  ADS  Google Scholar 

  3. Beiersdorfer, P.: Testing QED and atomic-nuclear interactions with high-Z ions. J. Phys. B: At. Mol. Phys. 43, 074032 (2010)

    Article  ADS  Google Scholar 

  4. Beier, T.: The g j factor of a bound electron and the hyperfine structure splitting in hydrogenlike ions. Phys. Rep. 339, 79 (2000)

    Article  ADS  Google Scholar 

  5. Shabaev, V.M.: Hyperfine structure of hydrogen-like ions. J. Phys. B: At. Mol. Phys. 27, 5825 (1994)

    Article  ADS  Google Scholar 

  6. Shabaev, V.M., Artemyev, A.N., Yerokhin, V.A., Zherebtsov, O.M., Soff, G.: Towards a test of QED in investigations of the hyperfine splitting in heavy ions. Phys. Rev. Lett. 86, 3959 (2001)

    Article  ADS  Google Scholar 

  7. Levine, M.A., Marrs, R.E., Henderson, J.R., Knapp, D.A., Schneider, M.B.: The electron beam ion trap: a new instrument for atomic physics measurements. Phys. Scr. T22, 157 (1988)

    Article  ADS  Google Scholar 

  8. Crespo López-Urrutia, J.R., Beiersdorfer, P., Savin, D.W., Widmann, K.: Direct observation of the spontaneous emission of the hyperfine transition F = 4 to F = 3 in ground state hydrogenlike165Ho66+ in an electron beam ion trap. Phys. Rev. Lett. 77, 826 (1996)

    Article  ADS  Google Scholar 

  9. Crespo López-Urrutia, J.R., Beiersdorfer, P., Widmann, K., Birkett, B.B., Mårtensson-Pendrill, A.-M., Gustavsson, M.GH.: Nuclear magnetization distribution radii determined by hyperfine transitions in the 1s level of H-like ions185Re74+ and187Re74+. Phys. Rev. A 57, 879 (1998)

    Article  ADS  Google Scholar 

  10. Beiersdorfer, P., et al.: Hyperfine structure of hydrogenlike thallium isotopes. Phys. Rev. A 64, 032506 (2001)

    Article  ADS  Google Scholar 

  11. Beiersdorfer, P., Osterheld, A.L., Scofield, J.H., Crespo López-Urrutia, J.R., Widmann, K.: Measurement of QED and Hyperfine Splitting in the 2s 1/2−2p 3/2 X-Ray Transition in Li-like209 B i 80+. Phys. Rev. Lett. 80, 3022–3025 (1998)

    Article  ADS  Google Scholar 

  12. Klaft, I., et al.: Precision laser spectroscopy of the ground state hyperfine splitting of hydrogenlike209 B i 82+. Phys. Rev. Lett. 73, 2425 (1994)

    Article  ADS  Google Scholar 

  13. Seelig, P., et al.: Ground state hyperfine splitting of hydrogenlike207 P b 81+ by laser excitation of a bunched ion beam in the GSI experimental storage ring. Phys. Rev. Lett. 81, 4824 (1998)

    Article  ADS  Google Scholar 

  14. Kluge, H.-J., et al.: HITRAP - A facility at GSI for highly charged ions. Adv. Quant. Chem. 53, 83 (2008)

    Article  Google Scholar 

  15. Steck, M., Beller, P., Beckert, K., Franzke, B., Nolden, F.: Electron cooling experiments at the ESR. Nucl. Instrum. Meth. A 532, 357 (2004)

    Article  ADS  Google Scholar 

  16. Hannen, V., et al.: Detection system for forward emitted photons at the experimental storage ring at GSI. J. Instum. (2013). in print

  17. Anielski, D.: Entwicklung eines Detektoraufbaus zur Bestimmung der 2s-Hyperfeinstrukturaufspaltung von209 B i 80+ am Experimentierspeicherring an der GSI. Diploma Thesis, Westfälische Wilhelms-Universität Münster (2010)

    Google Scholar 

  18. Lochmann, M.: Laserspektroskopie der Grundzustands-Hyperfeinstruktur des lithiumähnlichen209 B i 80+. PhD Thesis, Johannes Gutenberg-Universität Mainz (2013)

    Google Scholar 

  19. Lochmann, M., et al.: to be submitted to Phys. Rev. Lett. (2014)

  20. Andreev, O.V., Glazov, D.A., Volotka, A.V., Shabaev, V.M., Plunien, G.: Evaluation of the screened vacuum-polarization corrections to the hyperfine splitting of Li-like bismuth. Phys. Rev. A 85, 022510 (2012)

    Article  ADS  Google Scholar 

  21. Vollbrecht, J.: PhD Thesis, Westfälische Wilhelms-Universität Münster in preparation

  22. Andjelkovic, Z., Bharadia, S., Sommer, B., Vogel, M., Nörtershäuser, W.: Towards high precision in-trap laser spectroscopy of highly charged ions. Hyp. Int. 196, 81–91 (2010)

    Article  ADS  Google Scholar 

  23. Brown, L.S., Gabrielse, G.: Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  24. Pedersen, H.B., Strasser, D., Heber, O., Rappaport, M.L., Zajfman, D.: Stability and loss in an ion-trap resonator. Phys. Rev. A 65, 042703 (2002)

    Article  ADS  Google Scholar 

  25. Weinberg, G., Beck, B.R., Steiger, J., Church, D.A., McDonald, J., Schneider, D.: Electron capture from H 2 to highly charged Th and Xe ions trapped at center-of-mass energies near 6 eV. Phys. Rev. A 57, 4452 (1998)

    Article  ADS  Google Scholar 

  26. Wineland, D.J., Dehmelt, H.G.: Principles of the stored ion calorimeter. Appl. Phys. 46, 919–930 (1975)

    Article  Google Scholar 

  27. Gruber, L., Holder, J.P., Schneider, D.: Formation of strongly coupled plasmas from multicomponent ions in a penning trap. Phys. Scr. 71, 60 (2005)

    Article  ADS  Google Scholar 

  28. Andelkovic, Z.: Setup of a penning trap for precision laser spectroscopy at HITRAP. Johannes Gutenberg-Universität Mainz, PhD Thesis (2012)

    Google Scholar 

  29. Vogel, M., Winters, D.FA., Segal, D.M., Thompson, R.C.: Proposed precision laser spectrometer for trapped, highly charged ions. Rev. Sci. Instrum. 76, 103102–103102 (2005)

    Article  ADS  Google Scholar 

  30. Bussmann, M., Schramm, U., Habs, D., Kolhinen, V.S., Szerypo, J.: Stopping highly charged ions in a laser-cooled one component plasma of ions. Int. J. Mass. Spectrom. 251, 179–189 (2006)

    Article  ADS  Google Scholar 

  31. Bussmann, M., Schramm, U., Habs, D.: Preparing a laser cooled plasma for stopping highly charged ions. Europ. Phys. J. D 45, 129–132 (2007)

    Article  ADS  Google Scholar 

  32. Andelkovic, Z., Cazan, R., et al.: Laser cooling of externally produced Mg ions in a Penning trap for sympathetic cooling of highly charged ions. Phys. Rev. A 87, 033423 (2013)

    Article  ADS  Google Scholar 

  33. Murböck, T., et al.: SpecTrap: precision spectroscopy of highly charged ionsstatus and prospects. Phys. Scr. 2013, 014096 (2013)

    Article  Google Scholar 

  34. Cazan, R., Geppert, C., Nörtershäuser, W., Sánchez, R.: Towards sympathetic cooling of trapped ions with laser-cooled Mg+ ions for mass spectrometry and laser spectroscopy. Hyp. Int. 196, 177–189 (2010)

    Article  ADS  Google Scholar 

  35. Davidson, R.C. (ed.): Physics of Nonneutral Plasmas. Addison-Wesley, New York, (1990)

  36. Fajans, J., Dubin, D.H.E. (eds.): Non-Neutral Plasma Physics II. AIP, New York, (1995)

  37. Huang, X.-P., Anderegg, F., Hollmann, E.M., Driscoll, C.F., O’Neil, T.M.: Steady-state confinement of non-neutral plasmas by rotating electric fields. Phys. Rev. Lett. 78, 875 (1997)

    Article  ADS  Google Scholar 

  38. Bharadia, S., Vogel, M., Segal, D.M., Thompson, R.C.: Dynamics of laser-cooled Ca+ ions in a Penning trap with a rotating wall. Appl. Phys. B 107, 1105–1115 (2012)

    Article  ADS  Google Scholar 

  39. Yu, J., Desaintfuscien, M., Plumelle, F.: Ion density limitation in a Penning trap due to the combined effect of asymmetry and space charge. Appl. Phys. B 48, 51–54 (1989)

    Article  ADS  Google Scholar 

  40. van Eijkelenborg, M.A., Storkey, M.EM., Segal, D.M., Thompson, R.C.: Sympathetic cooling and detection of molecular ions in a Penning trap. Phys. Rev. A 60, 3903 (1999)

    Article  ADS  Google Scholar 

  41. Albrecht, S., Altenburg, S., Siegel, C., Herschbach, N., Birkl, G.: A laser system for the spectroscopy of highly-charged bismuth ions. Appl. Phys. B 107, 1069 (2012)

    Article  ADS  Google Scholar 

  42. Schuch, R., et al.: The new Stockholm Electron Beam Ion Trap (S-EBIT). J. Instrum. 5, C12018 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to S. Schmidt.

Additional information

Proceedings of the 9th InternationalWorkshop on Application of Lasers and Storage Devices in Atomic Nuclei Research “Recent Achievements and Future Prospects” (LASER 2013) held in Poznan, Poland, 13–16 May, 2013

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, S., Geppert, C., Andelkovic, Z. et al. Laser spectroscopy methods for probing highly charged ions at GSI. Hyperfine Interact 227, 29–43 (2014). https://doi.org/10.1007/s10751-014-1048-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-014-1048-1

Keywords

Navigation