Skip to main content
Log in

Ionization Scheme Development at the ISOLDE RILIS

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The resonance ionization laser ion source (RILIS) of the ISOLDE on-line isotope separation facility is based on the method of laser step-wise resonance ionization of atoms in a hot metal cavity. The atomic selectivity of the RILIS complements the mass selection process of the ISOLDE separator magnets to provide beams of a chosen isotope with greatly reduced isobaric contamination. Using a system of dye lasers pumped by copper vapour lasers, ion beams of 24 elements have been generated at ISOLDE with ionization efficiencies in the range of 0.5–15%. As part of the ongoing RILIS development off-line resonance ionization spectroscopy studies carried out in 2003 and 2004 have determined the optimal three-step ionization schemes for scandium, antimony, dysprosium and yttrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mishin V. I., Fedoseyev V. N., Kluge H.-J., Letokhov V. S., Ravn, H. L. Scheerer F., Shirakabe Y., Sundell S., Tengblad O. and the ISOLDE Collaboration, Nucl. Instrum. Methods Phys. Res. B 73 (1993), 550.

    Article  ADS  Google Scholar 

  2. Fedoseyev V. N., Huber G., Kster U., Lettry J., Mishin V. I., Ravn H. L., Sebastian V. and the ISOLDE Collaboration, Hyperfine Interact. 127 (2000), 409.

    Article  ADS  Google Scholar 

  3. Fedosseev V. N., Fedorov D. V., Horn R., Huber G., Kster U., Lassen J., Mishin V. I., Seliverstov M. D., Weissman L., Wendt K. and the ISOLDE Collaboration, Nucl. Instrum. Methods Phys. Res. B 204 (2003), 353.

    Article  ADS  Google Scholar 

  4. http://physics.nist.gov/cgi-bin/AtData/main\_asd

  5. Saloman E.B., Spectrochim Acta Part B 47 (1992), 517.

    Article  ADS  Google Scholar 

  6. Saloman E. B., Spectrochimica Acta Part B 49 (1994), 251.

    Article  ADS  Google Scholar 

  7. Zaidi A. A., Makdisi Y. and Bhatia K. S., J. Phys. B: At. Mol. Phys. 17 (1984), 355.

    Article  ADS  Google Scholar 

  8. Hassini F., Ben Ahmed Z., Robaux O., Vergs J. and Wyart J.-F., J. Opt. Soc. Am. B 5 (1988), 2060.

    Article  ADS  Google Scholar 

  9. Sugar J. and Corliss C., J. Phys. Chem. Ref. Data 9 (1980), 473.

    ADS  Google Scholar 

  10. Kaufman V. and Sugar J., J. Phys.Chem. Ref. Data 17 (1988), 1679.

    Article  ADS  Google Scholar 

  11. Reshetnikova O. F. and Skorohod E. P., Opt. Spectrosc. 87 (1999), 911.

    Google Scholar 

  12. Moore C.E., Atomic energy levels, NSRDS-NBS 35 (U.S. Government Printing Office, Washington, District of Columbia, 1971), Vol. II.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Marsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedosseev, V.N., Marsh, B.A., Fedorov, D.V. et al. Ionization Scheme Development at the ISOLDE RILIS. Hyperfine Interact 162, 15–27 (2005). https://doi.org/10.1007/s10751-005-9204-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-005-9204-2

Key Words

Navigation