Skip to main content

Advertisement

Log in

Cladocera in shallow lakes from the Ecuadorian Andes show little response to recent climate change

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Lakes of the Andean páramo are critical water reservoirs for millions of people. Páramo ecosystems have experienced anthropogenic warming faster than the global average. Recent paleolimnological work from Cajas National Park (southern Ecuador) revealed striking shifts in diatoms and Cladocera linked to climate change. However, the impacts on shallow lakes (< 5 m deep), which are numerically dominant on the landscape, remain poorly understood. Here, we use paleolimnology to investigate cladoceran species changes and responses to climate change in three shallow waterbodies from Cajas. Each system supported abundant littoral Cladocera. The deepest site (~ 4 m) contained the highest proportion of pelagic taxa, while the shallowest (~ 0.3 m) contained almost exclusively littoral taxa. Cladoceran assemblages in these shallow lakes reflect littoral habitat, likely partly influenced by shifting precipitation, and in one site, construction of a small rock dam. The cladoceran assemblage shifts do not align with regional temperature increases and reduced wind speeds, contrasting the ecological responses previously recorded in nearby deeper lakes. Although these polymictic, ice-free shallow systems are not immune to climate-related change, algal and cladoceran assemblages in nearby deeper lakes are responding earlier and more sensitively to recent climate changes, largely through changes to lake thermal stratification regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Appleby, P. G., 2001. Chronostratigraphic techniques in recent sediments. In Last, W. M. & J. P. Smol (eds), Tracking environmental change using lake sediments, Vol. 1., Basin analysis, coring, and chronological techniques Springer, Dordrecht: 171–203.

    Chapter  Google Scholar 

  • Bos, D. G. & B. F. Cumming, 2003. Sedimentary cladoceran remains and their relationship to nutrients and other limnological variables in 53 lakes from British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 60: 1177–1189.

    Article  Google Scholar 

  • Brecher, H. H. & L. G. Thompson, 1993. Measurement of the retreat of Qori Kalis Glacier in the tropical Andes of Peru by terrestrial photogrammetry. Photogrammetric Engineering and Remote Sensing 59: 1017–1022.

    Google Scholar 

  • Brodersen, K. P., M. C. Whiteside & C. Lindegaard, 1998. Reconstruction of trophic state in Danish lakes using subfossil chydorid (Cladocera) assemblages. Canadian Journal of Fisheries and Aquatic Sciences 55: 1093–1103.

    Article  Google Scholar 

  • Buytaert, W., R. Célleri, B. De Bièvre, F. Cisneros, G. Wyseure, J. Deckers & R. Hofstede, 2006. Human impact on the hydrology of the Andean páramos. Earth-Science Reviews 79: 53–72.

    Article  Google Scholar 

  • Coronel, J. S., X. Aguilera, S. Decleck & L. Brendonck, 2009. Resting egg bank reveals high cladoceran species richness in high-altitude temporary peat land pools. Revista Boliviana de Ecología y Conservación Ambiental 25: 51–67.

    Google Scholar 

  • Delachaux, T., 1918. Cladocères des Andes péruviennes. Bulletin de la Société Neuchâteloise des Sciences Naturelles 43: 18–38.

    Google Scholar 

  • Espinosa, C., 2005. Payment for water-based environmental services: Ecuador’s experiences, lessons learned and ways forward. IUCN Water, Nature and Economics Technical Paper No. 2, IUCN, Ecosystems and Livelihoods Group Asia, Colombo, Sri Lanka.

  • Foster, P., 2001. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews 55: 73–106.

    Article  Google Scholar 

  • Francou, B., P. Ribstein, P. Wagnon, E. Ramirez & B. Pouyaud, 2005. Glaciers of the tropical Andes: indicators of global climate variability. In Bugmann, H. K. M. & M. A. Reasoner (eds), Huber UM. Global change and mountain regions. Advances in global change research. Springer, Dodrecht: 187–204.

    Google Scholar 

  • Giles M, N. Michelutti & J. P. Smol, 2018. Long-term limnological change in the Ecuadorian páramo: comparing the ecological responses to climate warming of shallow versus deep lakes. Freshwater Biology. https://doi.org/10.1111/fwb.13159.

    Article  Google Scholar 

  • Glew, J. R., 1988. A portable extruding device for close interval sectioning of unconsolidated core samples. Journal of Paleolimnology 1: 235–239.

    Article  Google Scholar 

  • Glew, J. R., 1989. A new trigger mechanism for sediment samplers. Journal of Paleolimnology 2: 241–243.

    Article  Google Scholar 

  • Hansen, B. C. S., D. T. Rodbell, G. O. Seltzer, B. León, K. R. Young & M. Abbott, 2003. Late-glacial and Holocene vegetational history from two sites in the western Cordillera of southwestern Ecuador. Palaeogeography, Palaeoclimatology, Palaeoecology 194: 79–108.

    Article  Google Scholar 

  • Herzog, S. K., R. Martínez, P. M. Jørgensen & H. Tiessen (eds), 2011. Climate change and biodiversity in the tropical Andes. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), New York.

    Google Scholar 

  • Hofmann, W., 1998. Cladocerans and chironomids as indicators of lake level changes in north temperate lakes. Journal of Paleolimnology 19: 55–62.

    Article  Google Scholar 

  • Hulme, M. & D. Viner, 1998. A climate change scenario for the tropics. Climatic Change 39: 145–176.

    Article  Google Scholar 

  • Jeziorski, A., N. D. Yan, A. M. Paterson, A. M. DeSellas, M. A. Turner, D. S. Jeffries, B. Keller, R. C. Weeber, D. K. McNicol, M. E. Palmer, K. McIver, K. Arseneau, B. K. Ginn, B. F. Cumming & J. P. Smol, 2008. The widespread threat of calcium decline in fresh waters. Science 322: 1374–1377.

    Article  PubMed  CAS  Google Scholar 

  • Jeziorski, A., B. Keller, A. M. Paterson, C. M. Greenaway & J. P. Smol, 2013. Aquatic ecosystem responses to rapid recovery from extreme acidification and metal contamination in lakes near Wawa, Ontario. Ecosystems 16: 209–223.

    Article  CAS  Google Scholar 

  • Korhola, A., 1999. Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their potential in environmental reconstruction. Ecography 22: 357–373.

    Article  Google Scholar 

  • Korhola, A. & M. Rautio, 2001. Cladocera and other brachiopod crustaceans. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking environmental change using lake sediments, Vol. 4., Zoological indicators Springer, Dordrecht: 5–41.

    Chapter  Google Scholar 

  • Korhola, A., S. Sorvari, M. Rautio, P. G. Appleby, J. A. Dearing, Y. Hu, N. Rose, A. Lami & N. G. Cameron, 2002. A multi-proxy analysis of climate impacts on the recent development of subarctic Lake Saanajärvi in Finnish Lapland. Journal of Paleolimnology 28: 59–77.

    Article  Google Scholar 

  • Korosi, J. B. & J. P. Smol, 2012a. An illustrated guide to the identification of cladoceran subfossils from lake sediments in northeastern North America: part 1 – the Daphniidae, Leptodoridae, Bosminidae, Polyphemidae, Holopedidae, Sididae, and Macrothricidae. Journal of Paleolimnology 48: 571–586.

    Article  Google Scholar 

  • Korosi, J. B. & J. P. Smol, 2012b. An illustrated guide to the identification of cladoceran subfossils from lake sediments in northeastern North America: part 2 – the Chydoridae. Journal of Paleolimnology 48: 587–622.

    Article  Google Scholar 

  • Kruk, C., L. Rodríguez-Gallego, M. Meerhoff, F. Quintans, G. Lacerot, N. Mazzeo, F. Scasso, J. C. Paggi, E. T. H. M. Peeters & M. Scheffer, 2009. Determinants of biodiversity in subtropical shallow lakes (Atlantic coast, Uruguay). Freshwater Biology 54: 2628–2641.

    Article  CAS  Google Scholar 

  • Kurek, J., J. B. Korosi, A. Jeziorski & J. P. Smol, 2010. Establishing reliable minimum count sizes for cladoceran subfossils sampled from lake sediments. Journal of Paleolimnology 44: 603–612.

    Article  Google Scholar 

  • Labaj, A. L., J. Kurek, A. Jeziorski & J. P. Smol, 2015. Elevated metal concentrations inhibit biological recovery of Cladocera in previously acidified boreal lakes. Freshwater Biology 60: 347–359.

    Article  CAS  Google Scholar 

  • Labaj, A. L., N. Michelutti & J. P. Smol, 2017. Changes in cladoceran assemblages from tropical high mountain lakes during periods of recent climate change. Journal of Plankton Research 39: 211–219.

    Google Scholar 

  • Labaj, A. L., N. Michelutti & J. P. Smol, 2018. Annual stratification patterns in tropical mountain lakes reflect altered thermal regimes in response to climate change. Fundamental and Applied Limnology. https://doi.org/10.1127/fal/2018/1151.

    Article  Google Scholar 

  • López-Blanco, C. & A. Y. Sinev, 2016. Cladocera biodiversity in La Tembladera Lake (Ecuador): a paleolimnological approach. Crustaceana 89: 1611–1637.

    Article  Google Scholar 

  • Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. Journal of Paleolimnology 18: 395–420.

    Article  Google Scholar 

  • Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. Journal of Paleolimnology 19: 443–463.

    Article  Google Scholar 

  • Marsicano, L. J., J. L. Hartranft, P. A. Siver & J. S. Hamer, 1995. An historical account of water quality changes in Candlewood Lake, Connecticut, over a sixty year period using paleolimnology and ten years of monitoring data. Lake and Reservoir Management 11: 15–28.

    Article  Google Scholar 

  • Michelutti, N., J. M. Blais, B. F. Cumming, A. M. Paterson, K. Rühland, A. P. Wolfe & J. P. Smol, 2010. Do spectrally inferred determinations of chlorophyll a reflect trends in lake trophic status? Journal of Paleolimnology 43: 205–217.

    Article  Google Scholar 

  • Michelutti, N., A. P. Wolfe, C. A. Cooke, W. O. Hobbs, M. Vuille & J. P. Smol, 2015. Climate change forces new ecological states in tropical Andean lakes. PLoS ONE 10: e0115338.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michelutti, N. & J. P. Smol, 2016. Visible spectroscopy reliably tracks trends in paleo-production. Journal of Paleolimnology 56: 253–265.

    Article  Google Scholar 

  • Michelutti, N., A. L. Labaj, C. Grooms & J. P. Smol, 2016. Equatorial mountain lakes show extended periods of thermal stratification with recent climate change. Journal of Limnology 75: 403–408.

    Google Scholar 

  • Minvielle, M. & R. D. Garreaud, 2011. Projecting rainfall changes over the South American Altiplano. Journal of Climate 24: 4577–4583.

    Article  Google Scholar 

  • Mosquera, P. V., H. Hampel, R. F. Vázquez, M. Alonso & J. Catalan, 2017. Abundance and morphometry changes across the high-mountain lake-size gradient in the tropical Andes of Southern Ecuador. Water Resources Research 53: 7269–7280.

    Article  Google Scholar 

  • Nevalainin, L., K. Sarmaja-Korjonen & T. P. Luoto, 2011. Sedimentary Cladocera as indicators of past water-level changes in shallow northern lakes. Quaternary Research 75: 430–437.

    Article  Google Scholar 

  • Peña, E. J., H. Sandoval, O. Zuñiga & M. Torres, 2009. Estimates of carbon reservoirs in high-altitude wetlands in the Colombian Andes. Journal of Agriculture and Rural Development in the Tropics and Subtropics 110: 115–126.

    Google Scholar 

  • Rautio, M., S. Sorvari & A. Korhola, 2000. Diatom and crustacean zooplankton communities, their seasonal variability and representation in the sediments of subarctic Lake Saanajärvi. Journal of Limnology 59 (Supplement 1): 81–96.

    Google Scholar 

  • Rühland, K. M., A. M. Paterson & J. P. Smol, 2015. Lake diatom responses to warming: reviewing the evidence. Journal of Paleolimnology 54: 1–35.

    Article  Google Scholar 

  • Scheffer, M., G. J. van Geest, K. Zimmer, E. Jeppesen, M. G. Butler, M. A. Hanson, S. Declerck & L. De Meester, 2006. Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos 112: 227–231.

    Article  Google Scholar 

  • Schelske, C. L., A. Peplow, M. Brenner & C. N. Spencer, 1994. Low-background gamma counting: applications for 210Pb dating of sediments. Journal of Paleolimnology 10: 115–128.

    Article  Google Scholar 

  • Smol, J. P., A. P. Wolfe, H. J. B. Birks, M. S. V. Douglas, V. J. Jones, A. Korhola, R. Pienitz, K. Rühland, S. Sorvari, D. Antoniades, S. J. Brooks, M.-A. Fallu, M. Hughes, B. E. Keatley, T. E. Laing, N. Michelutti, L. Nazarova, M. Nyman, A. M. Paterson, B. Perren, R. Quinlan, M. Rautio, E. Saulnier-Talbot, S. Siitonen, N. Solovieva & J. Weckström, 2005. Climate-driven regime shifts in the biological communities of arctic lakes. Proceedings of the National Academy of Sciences of the United States of America 102: 4397–4402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smol, J. P., 2008. Pollution of lakes and rivers: A paleoenvironmental perspective. Blackwell Publishing, Malden: 383.

    Google Scholar 

  • Smol, J. P. & M. S. V. Douglas, 2007. From controversy to consensus: making the case for recent climate change in the Arctic using lake sediments. Frontiers in Ecology and the Environment 5: 466–474.

    Article  Google Scholar 

  • Steinitz-Kannan, M., 1997. The lakes in Andean protected areas of Ecuador. George Wright Forum 14: 33–43.

    Google Scholar 

  • Sweetman, J. N., E. LaFace, K. M. Rühland & J. P. Smol, 2008. Evaluating the response of Cladocera to recent environmental changes in lakes from the central Canadian Arctic treeline region. Arctic, Antarctic, and Alpine Research 40: 584–591.

    Article  Google Scholar 

  • Sweetman, J. N., K. M. Rühland & J. P. Smol, 2010. Environmental and spatial factors influencing the distribution of cladocerans in lakes across the central Canadian Arctic treeline region. Journal of Limnology 69: 76–87.

    Article  Google Scholar 

  • Szeroczyńska, K. & K. Sarmaja-Korjonen, 2007. Atlas of subfossil Cladocera from central and northern Europe. Friends of the Lower Vistula Society, Świecie: 83.

    Google Scholar 

  • ter Braak, C. J. F. & P. Šmilauer, 2012. Canoco 5, Windows release (5.00). Microcomputer Power, Ithaca.

    Google Scholar 

  • Torres, L. E. & K. Rylander, 2006. Diversity and abundance of littoral cladocerans and copepods in nine Ecuadorian highland lakes. Revista de Biología Tropical 54: 131–137.

    Article  PubMed  Google Scholar 

  • Vergara, W., A. M. Deeb, A. M. Valencia, R. S. Bradley, B. Francou, A. Zarzar, A. Grünwaldt & S. M. Haeussling, 2007. Economic impacts of rapid glacier retreat in the Andes. EOS 88: 261–268.

    Article  Google Scholar 

  • Vijverberg, J. & M. Boersma, 1997. Long-term dynamics of small-bodied and large-bodied cladocerans during the eutrophication of a shallow reservoir, with special attention for Chydorus sphaericus. Hydrobiologia 360: 233–242.

    Article  Google Scholar 

  • Viviroli, D., D. R. Archer, W. Buytaert, H. J. Fowler, G. B. Greenwood, A. F. Hamlet, Y. Huang, G. Koboltschnig, M. I. Litaor, J. I. López-Blanco, S. Lorentz, B. Schädler, H. Schreier, K. Schwaiger, M. Vuille & R. Woods, 2011. Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrology and Earth System Sciences 15: 471–504.

    Article  Google Scholar 

  • Vuille, M., 2013. Climate change and water resources in the tropical Andes. Inter-American Development Bank. Technical Note # IDB-TN-515.

  • Vuille, M. & R. S. Bradley, 2000. Mean annual temperature trends and their vertical structure in the tropical Andes. Geophysical Research Letters 27: 3885–3888.

    Article  Google Scholar 

  • Vuille, M., B. Francou, P. Wagnon, I. Juen, G. Kaser, B. G. Mark & R. S. Bradley, 2008. Climate change and tropical Andean glaciers: past, present and future. Earth-Science Reviews 89: 79–96.

    Article  Google Scholar 

  • Winder, M. & D. E. Schindler, 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85: 2100–2106.

    Article  Google Scholar 

  • Wolfe, A. P., R. D. Vinebrooke, N. Michelutti, B. Rivard & B. Das, 2006. Experimental calibration of lake-sediment spectral reflectance to chlorophyll a concentrations: methodology and paleolimnological validation. Journal of Paleolimnology 36: 91–100.

    Article  Google Scholar 

  • Yan, N. D., W. Keller, K. M. Somers, T. W. Pawson & R. E. Girard, 1996. Recovery of crustacean zooplankton communities from acid and metal contamination: comparing manipulated and reference lakes. Canadian Journal of Fisheries and Aquatic Sciences 53: 1301–1327.

    Article  Google Scholar 

  • Yatigammana, S. K. & B. F. Cumming, 2017. Cladocera assemblages from reservoirs in Sri Lanka and their relationship to measured limnological variables. Lakes and Reservoirs: Research and Management 22: 247–261.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Chris Grooms for assistance in the field. We also wish to thank the staff of Cajas National Park and ETAPA (in particular Juan Carlos Quezada Ledesma, Pablo Vernardo Mosquera Vintimilla and José Caceres) for assistance with research permits and logistics. Two anonymous reviewers provided helpful comments on this manuscript. This work was funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) award to JPS, an NSERC postgraduate award to ALL, and a Queen’s University Travel Award to ALL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Labaj.

Additional information

Handling editor: Jasmine Saros

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Air temperature and wind speed from the Cañar meteorological station, located ~ 30 km east of Cajas. A LOESS smoother (polynomial degree = 1) with span 0.05 (air temperature) and 0.33 (wind speed) was used to visualize trends in the data. Supplementary material 1 (JPEG 1916 kb)

Online Resource 2

Photograph of the dam constructed at an outlet stream of Apicocha. Supplementary material 2 (JPEG 1197 kb)

Online Resource 3

210Pb activity and age-depth model for each of the three shallow lakes. Supplementary material 3 (JPEG 1150 kb)

Online Resource 4

Photomicrographs of each of the unidentified, numbered taxa. Supplementary material 4 (JPEG 2016 kb)

Online Resource 5

Average rarefied species richness of each of the shallow (grey) and deep (black) lakes. Dashed lines represent means of shallow (grey) and deep (black) lakes. Supplementary material 5 (JPEG 621 kb)

Online Resource 6

Photograph of Apicocha, showing high water mark on rocks and shoreline. Supplementary material 6 (JPEG 2866 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labaj, A.L., Michelutti, N. & Smol, J.P. Cladocera in shallow lakes from the Ecuadorian Andes show little response to recent climate change. Hydrobiologia 822, 203–216 (2018). https://doi.org/10.1007/s10750-018-3681-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3681-1

Keywords

Navigation