Skip to main content
Log in

Adaptive phenotypic plasticity of Avicennia officinalis L. across the salinity gradient in the Sundarbans of Bangladesh

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Adaptive phenotypic plasticity of Avicennia officinalis across the salinity gradient in the Sundarbans of Bangladesh was studied. Propagule morphology was compared through use of a completely randomized design. Propagule growth initiation traits across the salinity gradient (from 0 to 35 ppt at 5 ppt interval) were studied by means of a randomized block design. Propagules showed variability in length, width, and weight across the salinity gradient in the Sundarbans. Propagule growth initiation time, mean growth initiation time, growth initiation index, and propagule growth initiation percentage of A. officinalis varied significantly with the increasing salinity and among low, medium, and high saline zones. However, propagules originating from the high and medium saline zones started their growth initiation more rapidly and vigorously at high salinities compared to those from the low saline zone. Therefore, A. officinalis exhibited adaptive phenotypic plasticity in terms of variability in propagule size and weight as well as physiologically adaptive plastic responses during propagule growth initiation across the salinity gradient in the Sundarbans. A. officinalis in high and medium saline zones of Sundarbans is the most salt-adapted phenotype, and a good knowledge about this will be widely useful for successful regeneration, coastal afforestation, and conservation of this species in increasing saline environments in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alam, M. R., H. Mahmood, M. M. Rahman, T. Biswas, S. Nasrin & M. S. T. L. R. Khushi, 2017. Ecological status and environmental protective role of Avicennia officinalis in the vulnerable coastal regions of Bangladesh: an overview. The Indian Forester 143(9): 817–822.

    Google Scholar 

  • Alonso-Blanco, C., V. H. Blankestijn-de, J. Hanhart & M. Koornneef, 1999. Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. Proceedings of the National Academy of Sciences USA 96: 4710–4717.

    Article  CAS  Google Scholar 

  • Basar, A., 2012. Water security in the coastal region of Bangladesh: would desalinization be a solution to the vulnerable communities of the Sundarbans? Bangladesh e Journal of Sociology 9: 31–39.

    Google Scholar 

  • Bytnerowicz, T. A. & R. I. Carruthers, 2014. Germination characteristics of Zannichellia palustris from a northern California spring-fed river. Aquatic Botany 119: 44–50.

    Article  Google Scholar 

  • Callaway, R. M., S. C. Pennings & C. L. Richards, 2003. Phenotypic plasticity and interactions among plants. Ecology 84(5): 1115–1128.

    Article  Google Scholar 

  • Cavalcanti, V. F., A. C. S. Andrade & M. L. G. Soares, 2007. Germination of Avicennia schaueriana and Laguncularia racemosa from two physiographic types of mangrove forest. Aquatic Botany 86: 285–290.

    Article  Google Scholar 

  • Chambel, M. R., J. Climent, R. Alia & F. Valladares, 2005. Phenotypic plasticity: a useful framework for understanding adaptation in forest species. Investigation Agraria Sistemas Y Recursos Forestales 14: 334–344.

    Article  Google Scholar 

  • Chen, Y. P. & Y. Ye, 2014. Early responses of Avicennia marina (Forsk) Vierh. To intertidal elevation and light level. Aquatic Botany 112: 33–40.

    Article  CAS  Google Scholar 

  • Copeland, L. O. & M. B. McDonald, 2005. Principles of Seed Science and Technology. Springer (India) Private Limited, New Delhi: 124–139.

    Google Scholar 

  • Das, S. S., S. Das & P. Ghosh, 2014. Plylogenetic relationships among three species of the mangrove genus Avicennia found in Indian Sundarban as revealed by RAPD analysis. Asian Journal of Plant Science Research 4: 25–30.

    Google Scholar 

  • Das, S. & N. A. Siddiqi, 1985. The Mangroves and Mangrove Forests of Bangladesh, Mangrove Silviculture Division, Bulletin No. 2 UNDP/FAO project BGD/79/017. Bangladesh Forest Research Institute, Chittagong.

    Google Scholar 

  • Ellis, R. A. & E. H. Roberts, 1981. Seed Science and Technology 9: 373–409.

    Google Scholar 

  • FAO, 1994. Mangrove area management guidelines. Forestry paper no. 117, FAO, Rome.

  • Freitas, R. F. & C. S. B. Costa, 2014. Germination responses to salt stress of two intertidal populations of the perennial glasswort Sarcocornia ambigua. Aquatic Botany 117: 12–17.

    Article  Google Scholar 

  • Gopal, B. & M. Chauhan, 2006. Biodiversity and its conservation in the Sundarbans Mangrove Ecosystem. Aquatic Sciences 68: 338–354.

    Article  Google Scholar 

  • Hoque, A. K. F., M. R. Alam, M. E. Kabir & M. S. Islam, 1999. Effect of salinity on the germination of Sonneratia apetala Buch.-Ham. Bangladesh Journal of Forest Science 28: 32–37.

    Google Scholar 

  • Huang, H. L., Y. L. Huang, T. C. Wu & W. Y. Kao, 2015. Phenotypic variation and germination behavior between two altitudinal populations of two varieties of Bidens pilosa in Taiwan. Taiwania 60: 194–202.

    Google Scholar 

  • Hutchings, P. & P. Saenger, 1987. Ecology of Mangroves. University of Queensland Press, Australia.

    Google Scholar 

  • Iftekhar, M. S. & P. Saenger, 2008. Vegetation dynamics in the Bangladesh Sundarbans mangroves: a review of forest inventories. Wetlands Ecology and Management 16: 291–312.

    Article  Google Scholar 

  • Islam, M. S. & M. A. Wahab, 2005. A review on the present status and management of mangrove wetland habitat resources in Bangladesh with emphasis on mangrove fisheries and aquaculture. Hydrobiologia 542: 165–190.

    Article  Google Scholar 

  • Janousek, C. N. & C. L. Folger, 2013. Inter-specific variation in salinity effects on germination in Pacific Northwest tidal wetland plants. Aquatic Botany 111: 104–111.

    Article  CAS  Google Scholar 

  • Karaguzel, O., S. Cakmakci, V. Ortacesme & A. B. Aydinoglu, 2004. Influence of seed coat treatments on germination and early seedling growth of Lupinus varius L. Pakistan Journal of Botany 36: 65–74.

    Google Scholar 

  • Kim, D. H., K. T. Aldridge, J. D. Brookes & G. G. Ganf, 2013. The effect of salinity on the germination of Ruppia tuberosa and Ruppia megacarpa and implications for the Coorong: a coastal lagoon of southern Australia. Aquatic Botany 111: 81–88.

    Article  CAS  Google Scholar 

  • Lear, R. & T. Turner, 1977. Mangroves of Australia. University of Queensland Press, St. Lucia.

    Google Scholar 

  • MacMillan, C., 1974. Salt tolerance of mangroves and submerged aquatic plants. In Reimold, R. J. & W. H. Queen (eds), Ecology of Halophytes. Academic Press, NewYork: 379–390.

    Chapter  Google Scholar 

  • Mahmood, H., S. Saha, S. Salekin, A. A. Mamun, M. R. H. Siddique & S. M. R. Abdullah, 2014. Salinity influence on germination of four important mangrove species of the Sundarbans, Bangladesh. Journal of Agriculture and Forestry 60: 125–135.

    Google Scholar 

  • Mahmood, H., 2015. Handbook of selected plant species of the Sundarbans and the embankment ecosystem, Sustainable Development and Biodiversity Conservation in Coastal protection Forests, Bangladesh, GIZ GmbH, German Federal Ministry for Economic Cooperation and Development (BMZ).

  • Minar, M. H., M. B. Hossain & M. D. Shamsuddin, 2013. Climate change and coastal zone of Bangladesh: vulnerability, resilience and adaptability. Middle-East Journal of Scientific Research 13: 114–120.

    Google Scholar 

  • Naskar, K. R. & R. Mandal, 1999. Ecology and Biodiversity of Indian Mangroves. Naya Publishing House, Delhi: 196.

    Google Scholar 

  • ODA, 1985. A Forest Inventory of the Sundarbans, Bangladesh. Main Report. Land Resources Development Centre, Surbiton.

    Google Scholar 

  • Orchard, T., 1977. Estimating the parameter of plant seedling emergence. Seed Science and Technology 5: 61–69.

    Google Scholar 

  • Papry, R. I., 2014. Status of coastal plantation in the Chittagong coastal forest division. IOSR Journal of Environmental Science, Toxicology and Food Technology 8: 79–83.

    Article  Google Scholar 

  • Pascual, E. F., 2016. Comparative seed germination traits in bog and fen mire wetlands. Aquatic Botany 130: 21–26.

    Article  Google Scholar 

  • Pigliucci, M., 2001. Phenotypic plasticity, Beyond Nature and Nurture. The Johns Hopkins University Press, Baltimore and London.

    Google Scholar 

  • Proffitt, C. E. & S. E. Travis, 2010. Red mangrove seedling survival, growth, and reproduction: effects of environment and maternal genotype. Estuaries and Coasts 33: 890–901.

    Article  CAS  Google Scholar 

  • Rahman, M. M. & S. K. Biswas, 2011. Feasible Solution of Protection and Adaptation Strategy for Coastal Zone of Bangladesh. Pak J Meteorology 8(15): 9–19.

    Google Scholar 

  • Rejmánková, E., 2011. The role of macrophytes in wetland ecosystems. Journal of Ecology and Environment 34: 333–345.

    Article  Google Scholar 

  • Saenger, P., 2002. Mangrove Ecology, Silviculture and Conservation. Kluwer Academic Publishers, Dordrecht.

    Book  Google Scholar 

  • Shan, L., Z. RenChao, D. SuiSui & S. SuHua, 2008. Adaptation to salinity in mangroves: implication on the evolution of salt- tolerance. Chinese Science Bulletin 53(11): 1708–1715.

    Google Scholar 

  • Shin, C. J. & J. G. Kim, 2013. Ecotypic differentiation in seed and seedling morphology and physiology among Cicuta virosa populations. Aquatic Botany 111: 74–80.

    Article  Google Scholar 

  • Siddiqi, N. A., 2001. Mangrove Forestry in Bangladesh. Institute of Forestry and Environmental Sciences, University of Chittagong, Chittagong.

    Google Scholar 

  • Snell-Rood, E. C., J. D. Van Dyken, T. Cruickshank, M. J. Wade & A. P. Moczek, 2010. Towards a population genetic framework of developmental evolution: the costs, limits, and consequences of phenotypic plasticity. Bioessays 32: 71–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spalding, M. D., F. Blasco & C. D. Field, 1997. World Mangrove Atlas. The International Society for Mangrove Ecosystems, Okinawa.

    Google Scholar 

  • Sultan, S. E., 2000. Phenotypic plasticity for plant development, function and life history. Trends in Plant Science 5: 537–542.

    Article  CAS  PubMed  Google Scholar 

  • Thampanya, U., J. E. Vermaat, S. Sinsakul & N. Panapitukkul, 2006. Coastal erosion and mangrove progradation of Southern Thailand. Estuarine, Coastal and Shelf Science 68: 75–85.

    Article  Google Scholar 

  • Tomlinson, P. B., 1986. The Botany of Mangroves. Cambridge University Press, Cambridge.

    Google Scholar 

  • Urrego, L. E., E. C. Molina & J. A. Suárez, 2014. Environmental and anthropogenic influences on the distribution, structure, and floristic composition of mangrove forests of the Gulf of Urabá (Colombian Caribbean). Aquatic Botany 114: 42–49.

    Article  Google Scholar 

  • Waisel, Y., 1972. Biology of Halophytes. Academic Press, New York and London.

    Google Scholar 

  • Wall, C. B. & K. J. Stevens, 2015. Assessing wetland mitigation efforts using standing vegetation and seed bank community structure in neighboring natural and compensatory wetlands in north-central Texas. Wetlands Ecology and Management 23: 149–166.

    Article  Google Scholar 

  • West-Eberhard, M. J., 1989. Phenotypic plasticity and the origins of diversity. Annual Review of Ecology, Evolution, and Systematics 20: 249–278.

    Article  Google Scholar 

  • Zabala, N. Q., 1990. Silviculture of Species. Field document no. 14. Development of professional education in the Forestry Sector of Bangladesh, UNDP/FAO Project BGD/85/011.

  • Zheng, W. J., W. Q. Wang & P. Lin, 1999. Dynamics of element contents during the development of hypocotyls and leaves of certain mangrove species. Journal of Experimental Marine Biology and Ecology 233: 248–257.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Nagao Natural Environment Foundation (Granted in 2015), 3-3-7 Kotobashi, Sumida-ku, Tokyo 130-0022, Japan. The authors also appreciate the technical supports from Nutrient Dynamics Laboratory of Forestry and Wood Technology Discipline, Khulna University, Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Rabiul Alam.

Ethics declarations

Conflict of interests

The authors do not have any conflict of interest on any issue in this article.

Additional information

Handling editor: K. W. Krauss

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.R., Mahmood, H., Khushi, M.L.R. et al. Adaptive phenotypic plasticity of Avicennia officinalis L. across the salinity gradient in the Sundarbans of Bangladesh. Hydrobiologia 808, 163–174 (2018). https://doi.org/10.1007/s10750-017-3420-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3420-z

Keywords

Navigation