Skip to main content
Log in

Further insights into the responses of macroinvertebrate species to burial by sediment

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The impact of fine sediments on both habitat quality and macroinvertebrate communities of riverine systems has been well documented over recent years. However, there is a paucity of studies examining the mechanisms that relate macroinvertebrate sensitivity and responses of individual macroinvertebrate species to burial by sediment. Laboratory-based burial experiments were undertaken to study the response of some EPT species including Baetis rhodani, Ecdyonurus insignis, Rhithrogena semicolorata, Hydropsyche siltalai, Rhyacophila dorsalis and the amphipod Gammarus duebeni to burial. A range of burial conditions were studied which included five sediment fractions at two burial depths. Responses were variable across species and, overall, the ranking of the determinants that impacted on species responses to burial was burial depth > sediment class > species source, with no detectable effect linked to body size. Increased burial depth had the most marked effects on emergence times, while slower escape times were also observed from the finer sediment classes. Species source also influenced responses with some upland species taking longer or failing to emerge from burial. Further mechanistic studies, based on EPT species, are required to enhance our understanding of how and at what level sediment affect species, an essential step in developing pressure-specific biological metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allan, J. D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35: 257–284.

    Article  Google Scholar 

  • Angradi, T., 1999. Fine sediment and macroinvertebrate assemblages in Appalachian streams: a field experiment with biomonitoring applications. Journal of North American Benthological Society 18: 49–66.

    Article  Google Scholar 

  • Armstrong, J. D., P. S. Kemp, G. J. A. Kennedy, M. Ladle & N. J. Milner, 2003. Habitat requirements of Atlantic salmon and brown trout in rivers and streams. Fisheries Research 62: 143–170.

    Article  Google Scholar 

  • Bilotta, G. S. & R. E. Brazier, 2008. Understanding the influence of suspended solids on water quality and aquatic biota. Water Research 42: 849–861.

    Article  Google Scholar 

  • Bo, T., S. Fenoglio, G. Malacarne, M. Pessino & F. Sgariboldi, 2007. Effects of clogging on stream macroinvertebrates: an experimental approach. Limnologica 37: 186–192.

    Article  Google Scholar 

  • Braccia, A. & J. R. Voshell, 2006. Benthic macroinvertebrate fauna in small streams used by cattle in the Blue Ridge mountains, Virginia. Northeastern Naturalist 13: 269–286.

    Article  Google Scholar 

  • Braccia, A. & J. R. Voshell, 2007. Benthic macroinvertebrate responses to increasing levels of cattle grazing in Blue Ridge Mountain streams, Virginia, USA. Environmental Monitoring and Assessment 131: 185–200.

    Article  PubMed  Google Scholar 

  • Bryce, S., G. Lomnicky & P. Kaufmann, 2010. Protecting sediment-sensitive aquatic species in mountain streams through the application of biologically based streambed sediment criteria. Journal of the North American Benthological Society 29: 657–672.

    Article  Google Scholar 

  • Cocchiglia, L., S. Curran, E. Hannigan, P. J. Purcell & M. Kelly-Quinn, 2012. Evaluation of the effects of fine sediment inputs from stream culverts on brown trout egg survival through field and laboratory assessments. Inland Waters 2: 47–58.

    Article  Google Scholar 

  • Collins, A. L., P. S. Naden, D. A. Sear, J. I. Jones, I. D. L. Foster & K. Morrow, 2011. Sediment targets for informing river catchment management: international experience and prospects. Hydrological Processes 25: 2122–2129.

    Article  Google Scholar 

  • Connolly, N. M. & R. G. Pearson, 2007. The effect of fine sedimentation on tropical stream macroinvertebrate assemblages: a comparison using flow-through artificial stream channels and recirculating mesocosms. Hydrobiologia 592: 423–438.

    Article  Google Scholar 

  • Conroy, E., J. N. Turner, A. Rymszewicz, J. J. O’Sullivan, M. Bruen, D. D. Lawler, H. Lally & M. Kelly-Quinn, 2016a. The impact of cattle access on ecological water quality in streams: examples from agricultural catchments within Ireland. Science of the Total Environment 547: 17–29.

    Article  CAS  PubMed  Google Scholar 

  • Conroy, E., J. N. Turner, A. Rymszewicz, J. J. O’Sullivan, M. Bruen, D. D. Lawler, H. Lally & M. Kelly-Quinn, 2016b. Evaluating the relationship between biotic and sediment metrics using mesocosms and field studies. Science of the Total Environment 568: 1092–1101.

    Article  CAS  PubMed  Google Scholar 

  • Crisp, D. T., 1993. The ability of UK salmonid Alevins to emerge through a sand layer. Journal of Fish Biology 43: 656–658.

    Article  Google Scholar 

  • Culp, J. M., F. J. Wrona & R. W. Davies, 1986. Response of stream benthos and drift to fine sediment deposition versus transport. Canadian Journal of Zoology 64: 1345–1351.

    Article  Google Scholar 

  • Dobson, M., K. Poynter & H. Cariss, 2000. Case abandonment as a response to burial by Potamophylax cingulatus (Trichoptera: Limnephilidae) larvae. Aquatic Insects 22: 99–107.

    Article  Google Scholar 

  • Donohue, I. & K. Irvine, 2003. Effects of sediment particle size composition on survivorship of benthic invertebrates from Lake Tanganyika, Africa. Archiv fur Hydrobiologie 157: 131–144.

    Article  Google Scholar 

  • Ellis, M. M., 1936. Erosion silt as a factor in aquatic environments. Ecology 17: 29–42.

    Article  Google Scholar 

  • Evans, D., C. Gibson & R. Russell, 2006. Sediment loads and sources in heavily modified Irish catchments: a move towards informed management strategies. Geomorphology 79: 93–113.

    Article  Google Scholar 

  • Gaufin, A. R., R. Clubb & R. Newell, 1974. Studies on the tolerance of aquatic insects to low oxygen concentrations. The Great Basin Naturalist 34: 45–59.

    Google Scholar 

  • Gibbins, C., E. Scott, C. Soulsby & I. McEwan, 2005. The relationship between sediment mobilisation and the entry of Baetis mayflies into the water column in a laboratory flume. Hydrobiologia 533: 115–122.

    Article  Google Scholar 

  • Gjerlov, C., A. G. Hildrew & J. I. Jones, 2003. Mobility of stream invertebrates in relation to disturbance and refugia: a test of habitat templet theory. Journal of the North American Benthological Society 22: 207–223.

    Article  Google Scholar 

  • Greig, S. M., D. A. Sear & P. A. Carling, 2005. The impact of fine sediment accumulation on the survival of incubating salmon progeny: implications for sediment management. Science of the Total Environment 344: 241–258.

    Article  CAS  PubMed  Google Scholar 

  • Hanquet, D., M. Legalle, S. Garbage & R. Céréghino, 2004. Ontogenetic microhabitat shifts in stream invertebrates with different biological traits. Archiv für Hydrobiologie 160: 329–346.

    Article  Google Scholar 

  • Harrison, E. T., R. H. Norris & S. N. Wilkinson, 2007. The impact of fine sediment accumulation on benthic macroinvertebrates: implications for river management. In Proceedings of the 5th Australian Stream Management Conference. Australian Rivers: Making a Difference. Charles Sturt University, Thurgoona: 139–144.

  • Harrod, T. R. & F. D. Theurer, 2002. Sediment. In Haygarth, P. M. & S. C. Jarvis (eds), Agriculture, Hydrology and Water Quality. CAB International, Wallingford, UK: 155–170.

    Chapter  Google Scholar 

  • Heywood, M. J. T. & D. E. Walling, 2007. The sedimentation of salmonid spawning gravel in the Hampshire Avon catchment, UK: implications for the dissolved oxygen content of intragravel water and embryo survival. Hydrological Processes 21: 770–788.

    Article  CAS  Google Scholar 

  • Holomuzki, J. R. & B. J. Biggs, 2003. Sediment texture mediates high-flow effects on lotic macro-invertebrates. Journal of the North American Benthological Society 22: 542–553.

    Article  Google Scholar 

  • Holzenthal, R. W., R. J. Blahnik, A. L. Prather & K. M. Kjer, 2007. Order Trichoptera Kirby, 1813 (Insecta), Caddisflies. Zootaxa 1668: 639–698.

    Google Scholar 

  • Hynes, H., 1970. The ecology of stream insects. Annual Review of Entomology 15: 25–42.

    Article  Google Scholar 

  • Jakob, C., C. T. Robinson & U. Uehlinger, 2003. Longitudinal effects of experimental floods on stream benthos downstream from a large dam. Aquatic Sciences 65: 223–231.

    Article  Google Scholar 

  • Jones, J., J. Murphy, A. Collins, D. Sear, P. Naden & P. Armitage, 2012. The impact of fine sediment on macro-invertebrates. River Research and Applications 28: 1055–1071.

    Article  Google Scholar 

  • Kaller, M. & K. Hartman, 2004. Evidence of a threshold level of fine sediment accumulation for altering benthic macroinvertebrate communities. Hydrobiologia 518: 95–104.

    Article  Google Scholar 

  • Kaufmann, P. R., D. P. Larsen & J. M. Faustini, 2009. Bed stability and sedimentation associated with human disturbances in Pacific Northwest streams. Journal of the American Water Resources Association 45: 434–459.

    Article  Google Scholar 

  • Kemp, P., D. Sear, A. Collins, P. Naden & I. Jones, 2011. The impacts of fine sediment on riverine fish. Hydrological processes 25: 1800–1821.

    Article  Google Scholar 

  • Kibichii, S., H. B. Feeley, J. R. Baars & M. Kelly-Quinn, 2015. The influence of water quality on hyporheic invertebrate communities in agricultural catchments. Marine and Freshwater Research 66: 805–814.

    Article  Google Scholar 

  • Kreutzweiser, D. P., S. S. Capell & K. P. Good, 2005. Effects of fine sediment inputs from a logging road on stream insect communities: a large-scale experimental approach in a Canadian headwater stream. Aquatic Ecology 39: 55–66.

    Article  Google Scholar 

  • Lamouroux, N., S. Doledec & S. Gayraud, 2004. Biological traits of stream macroinvertebrate communities: effects of microhabitat, reach, and basin filters. Journal of the North American Benthological Society 23: 449–466.

    Article  Google Scholar 

  • Lancaster, J. & A. G. Hildrew, 1993. Characterizing in-stream flow refugia. Canadian Journal of Fisheries and Aquatic Sciences 50: 1663–1675.

    Article  Google Scholar 

  • Larsen, S. & S. J. Ormerod, 2010. Low-level effects of inert sediments on temperate stream invertebrates. Freshwater Biology 55: 476–486.

    Article  Google Scholar 

  • Larsen, S., I. P. Vaughan & S. J. Ormerod, 2009. Scale-dependent effects of fine sediments on temperate headwater invertebrates. Freshwater Biology 54: 203–219.

    Article  CAS  Google Scholar 

  • Larsen, S., G. Pace & S. J. Ormerod, 2011. Experimental effects of sediment deposition on the structure and function of macroinvertebrate assemblages in temperature streams. River Research and Applications 27: 257–267.

    Article  Google Scholar 

  • Lemly, A., 1982. Modification of benthic insect communities in polluted streams: combined effects of sedimentation and nutrient enrichment. Hydrobiologia 87: 229–245.

    Article  Google Scholar 

  • MacNeil, C., J. T. Dick, E. Bigsby, R. W. Elwood, W. I. Montgomery, C. N. Gibbins & D. W. Kelly, 2002. The validity of the Gammarus: asellus ratio as an index of organic pollution: abiotic and biotic influences. Water Research 36: 75–84.

    Article  CAS  PubMed  Google Scholar 

  • Maridet, L. & M. Phillippe, 1995. Influence of substrate characteristics on the vertical distribution of stream macroinvertebrates in the hyporheic zone. Folia Facultatis Scientiaram Naturalium Universitstis Masarykianae Brunensis, Biologia 91: 101–105.

    Google Scholar 

  • Matthaei, C., F. Weller, D. Kelly & C. Townsend, 2006. Impacts of fine sediment addition to tussock, pasture, dairy and deer farming in New Zealand. Freshwater Biology 51: 2154–2172.

    Article  Google Scholar 

  • Nuttall, P. M. & G. H. Bielby, 1973. The effect of china-clay wastes on stream invertebrates. Environmental Pollution 5: 77–86.

    Article  Google Scholar 

  • O’Connor, W. C. K. & T. E. Andrew, 1998. The effects of siltation on Atlantic salmon, Salmo salar L., embryos in the river Bush. Fisheries Management and Ecology 5: 393–401.

    Article  Google Scholar 

  • Ormerod, S., M. Dobson, A. Hildrew & C. Townsend, 2010. Multiple stressors in freshwater ecosystems. Freshwater Biology 55: 1–4.

    Article  Google Scholar 

  • Owens, P., R. Batalla, A. Collins, B. Gomez, D. Hicks, A. Horowitz, G. Kondolf, M. Marden, M. Page, D. Peacock, E. Petticrew, W. Salomons & N. Trustrum, 2005. Finegrained sediment in river systems: environmental significance and management issues. River Research and Applications 21: 693–717.

    Article  Google Scholar 

  • Poole, A. E., D. Bradley, R. Salazar & D. W. MacDonald, 2013. Optimizing agri-environment schemes to improve river health and conservation value. Agriculture, Ecosystems & Environment 181: 157–168.

    Article  Google Scholar 

  • Riek, E., 1973. The classification of the Ephemeroptera. In Proceedings of the First International Conference on Ephemeroptera: 160–178.

  • Rier, S. T. & D. K. King, 1996. Effects of inorganic sedimentation and riparian clearing on benthic community metabolism in an agriculturally-disturbed stream. Hydrobiologia 339: 111–121.

    Article  CAS  Google Scholar 

  • Robinson, C. T. & G. W. Minshall, 1986. Effects of disturbance frequency on stream benthic community structure in relation to canopy cover and season. Journal of the North American Benthological Society 5: 237–248.

    Article  Google Scholar 

  • Robinson, C. T., G. W. Minshall & S. R. Rushforth, 1990. Seasonal colonization dynamics of macroinvertebrates in an Idaho stream. Journal of the North American Benthological Society 9: 240–248.

    Article  Google Scholar 

  • Robinson, C. T., U. Uehlinger & M. T. Monaghan, 2003. Effects of a multi-year experimental flood regime on macroinvertebrates downstream of a reservoir. Aquatic Sciences 65: 210–222.

    Article  Google Scholar 

  • Ryan, P. A., 1991. Environmental effects of sediment on New Zealand streams: a review. New Zealand Journal Marine Freshwater Research 25: 207–221.

    Article  Google Scholar 

  • Sarriquet, P. E., P. Bordenave & P. Marmonier, 2007. Effects of bottom sediment restoration on interstitial habitat characteristics and benthic macroinvertebrate assemblages in a headwater stream. River Research and Applications 23: 815–828.

    Article  Google Scholar 

  • Sear, D. A., L. B. Frostick, G. Rollinson & T. Lisle, 2008. The significance and mechanics of fine-sediment infiltration and accumulation in gravel spawning beds. In Sear, D. & P. Devries (eds), Salmon Spawning Habitat in Rivers: Physical Controls, Biological Responses and Approaches to Remediation. American Fisheries Society, Bethesda: 149–174.

    Google Scholar 

  • Soulsby, C., A. F. Youngson, H. J. Moir & I. A. Malcolm, 2001. Fine sediment influence on salmonid spawning habitat in a lowland agricultural stream: a preliminary assessment. Science of the Total Environment 265: 295–307.

    Article  CAS  PubMed  Google Scholar 

  • Strayer, D. L. & D. Dudgeon, 2010. Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society 29: 344–358.

    Article  Google Scholar 

  • Stuart, A., 1958. The efficiency of adaptive structures in the nymph of Rhithrogena semicolorata (Curtis) (Ephemeroptera). Journal of Experimental Biology 35: 27–38.

    Google Scholar 

  • Sullivan, S. & M. Watzin, 2010. Towards a functional understanding of the effects of sediment aggradation on stream fish condition. River Research and Applications 26: 1298–1314.

    Article  Google Scholar 

  • Suren, A. M., M. L. Martin & B. J. Smith, 2005. Short-term effects of high suspended sediments on six common New Zealand stream invertebrates. Hydrobiologia 548: 67–74.

    Article  Google Scholar 

  • Sutherland, A. B., J. M. Culp & G. A. Benoy, 2012. Evaluation of Deposited Sediment and Macroinvertebrate Metrics Used to Quantify Biological Response to Excessive Sedimentation in Agricultural Streams. Environmental Management 50: 50–63.

    Article  PubMed  Google Scholar 

  • Usseglio-Polatera, P., M. Bournaud, P. Richoux & H. Tachet, 2000. Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. Freshwater Biology 43: 175–205.

    Article  Google Scholar 

  • Vorosmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan & C. R. Liermann, 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561.

    Article  CAS  PubMed  Google Scholar 

  • Walling, D. E., A. Collins & R. Stroud, 2008. Tracing suspended sediment and particulate phosphorus sources in catchments. Journal of Hydrology 350: 274–289.

    Article  CAS  Google Scholar 

  • Waters, T., 1995. Sediment in Streams: Sources, Biological Effects and Controls. AFS Monograph 7. American Fisheries Society, Bethesda.

    Google Scholar 

  • Wipfli, M. S., J. S. Richardson & R. J. Naiman, 2007. Ecological linkages between headwaters and downstream ecosystems: transport of organic matter, invertebrates, and wood down headwater channels. Journal of the American Water Resources Association 43: 72–85.

    Article  Google Scholar 

  • Wood, P. J. & P. D. Armitage, 1997. Biological effects of fine sediment in the lotic environment. Environmental Management 21: 203–217.

    Article  CAS  PubMed  Google Scholar 

  • Wood, P. J., A. R. Vann & P. J. Wanless, 2001. The response of Melampophylax mucoreus (Hagen) (Trichoptera: Limnephilidae) to rapid sedimentation. Hydrobiologia 455: 183–188.

    Article  Google Scholar 

  • Wood, P. J., J. Toone, M. T. Greenwood & P. D. Armitage, 2005. The response of four lotic macroinvertebrate taxa to burial by sediments. Archiv fur Hydrobiologie 163: 145–162.

    Article  Google Scholar 

  • Wood, P. J., A. J. Boulton, S. Little & R. Stubbington, 2010. Is the hyporheic zone a refugium for aquatic macroinvertebrates during severe low flow conditions? Fundamental and Applied Limnology 176: 377–390.

    Article  Google Scholar 

  • Zhang, Y., A. Collins, N. Murdoch, D. Lee & P. Naden, 2014. Cross sector contributions to river pollution in England and Wales: updating waterbody scale information to support policy delivery for the Water Framework Directive. Environmental Science & Policy 42: 16–32.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the contribution of discussions with Steve Ormerod, Des Walling, John Quinton and Martin McGarrigle on the SILTFLUX project work. Funding for this research was provided by the Environment Protection Agency, Ireland under the EPA STRIVE Programme (SILTFLUX 2010-W-LS-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Conroy.

Additional information

Handling editor: Eric Larson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conroy, E., Turner, J.N., Rymszewicz, A. et al. Further insights into the responses of macroinvertebrate species to burial by sediment. Hydrobiologia 805, 399–411 (2018). https://doi.org/10.1007/s10750-017-3328-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3328-7

Keywords

Navigation