Skip to main content

Advertisement

Log in

Climate-induced hydrography change favours small-bodied zooplankton in a coastal ecosystem

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In the Baltic Sea, the climate change is expected to reduce salinity and increase temperature, and shift mesozooplankton communities towards dominance of small-bodied brackish-water taxa and cause a decline in large-bodied marine taxa. In this article, we analyse environmental monitoring data, collected in a coastal area in the northern Baltic Archipelago Sea during May–September, over the period of 1967–2013, for trends and relationship between mesozooplankton biomass anomalies, salinity and temperature. During the study period, the surface water temperature increased and salinity decreased. Since the mid-1980s, the community was dominated by small-bodied brackish-water taxa, whereas large-bodied calanoid copepods and marine taxa were mostly scarce or absent from the samples. The observed decline of marine taxa was related to the decline in salinity and, to some extent, to the increase of temperature. The brackish-water taxa were, for the most part, positively influenced by the temperature increase, although possibly other direct or indirect factors, not considered in this study, were also influencing the dynamics. This study adds to the existing knowledge of a possible ongoing shift in the food web structure towards smaller-sized species and emphasizes the significance of long-term environmental monitoring in understanding the dynamics in plankton communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackefors, H. 1969. Ecological zooplankton investigations in the Baltic proper 1963–1965. Institute of Marine Research, Lysekil Series Biology Report, 18: 1–139.

  • BACC, 2008. Assessment of Climate Change for the Baltic Sea Basin. Springer-Verlag, Berlin Heidelberg, Berlin, Heidelberg.

    Google Scholar 

  • BACC II, 2015. Second Assessment of Climate Change for the Baltic Sea Basin. Springer International Publishing, Berlin.

  • Berglund, J., U. Müren, U. Båmstedt & A. Andersson, 2007. Efficiency of a phytoplankton-based and a bacterial-based food web in a pelagic marine system. Limnology and Oceanography 52: 121–131.

    Article  CAS  Google Scholar 

  • Burris, J. E., 1980. Vertical migration of zooplankton in the gulf of Finland. The American Midland Naturalist 103: 316–321.

    Article  Google Scholar 

  • Casini, M., J. Lövgren, J. Hjelm, M. Cardinale, J.-C. Molinero & G. Kornilovs, 2008. Multi-level trophic cascades in a heavily exploited open marine ecosystem. Proceedings of the Royal Society of London B: Biological Sciences 275: 1793–1801.

    Article  Google Scholar 

  • Dippner, J. W., J. Hänninen, H. Kuosa & I. Vuorinen, 2001. The influence of climate variability on zooplankton abundance in the Northern Baltic Archipelago Sea (SW Finland). ICES Journal of Marine Science: Journal du Conseil 58: 569–578.

    Article  Google Scholar 

  • Flinkman, J., I. Vuorinen & E. Aro, 1992. Planktivorous Baltic herring (Clupea harengus) prey selectively on reproducing copepods and cladocerans. Canadian Journal of Fisheries and Aquatic Sciences 49: 73–77.

    Article  Google Scholar 

  • Flinkman, J., I. Vuorinen, & Viitasalo, M. 1998. Changes in northern Baltic zooplankton and herring nutrition from 1980s to 1990s: top-down and bottom-up processes at work. Marine Ecology Progress Series 165:127–136.

  • Hansson, S., J. W. Dippner & U. Larsson, 2010. Climate effects on zooplankton biomasses in a coastal Baltic Sea area. Boreal environment research 15: 370–374.

    Google Scholar 

  • HELCOM. 1988. Guidelines for the Baltic monitoring programme for the third stage. Part D. Biological determinands. Baltic Sea Environment Proceedings.

  • HELCOM. 2013. Climate change in the Baltic Sea Area. HELCOM thematic assessment in 2013. Baltic Sea Environment Proceedings No. 137.

  • Hernroth, L.& H., Ackefors, 1979. The zooplankton o f the Baltic proper. Report, Fishery Board of Sweden, Institute of Marine Research 2: 1–60.

  • Hernroth, L., 1985. Recommendations on Methods for Marine Biological Studies in the Baltic Sea. Mesozooplankton Biomass Assessment. Baltic Marine Biological Publications.

  • Hirch, R. M. & J. R. Slack, 1984. Nonparametric trend test for seasonal data with serial dependence. Water Resources Research 20: 727–732.

    Article  Google Scholar 

  • Hirch, R. M., J. R. Slack & R. A. Smith, 1982. Techniques of trend analysis for monthly water quality data. Water Resources Research 18: 107–121.

    Article  Google Scholar 

  • Holliland, P. B., I. Ahalbeck, E. Westlund & N. S. Hansson, 2012. Ontogenetic and seasonal changes in diel vertical migration amplitude of the calanoid copepods Eurytemora affinis and Acartia spp. in a coastal area of the northern Baltic proper. Journal of Plankton Research 34: 298–307.

    Article  Google Scholar 

  • Hänninen, J., I. Vuorinen & P. Hjelt, 2000. Climatic factors in the Atlantic control the oceanographic and ecological changes in the Baltic Sea. Limnology and Oceanography 45: 703–710.

    Article  Google Scholar 

  • Hänninen, J., I. Vuorinen & G. Kornilovs, 2003. Atlantic climatic factors control decadal dynamics of a Baltic Sea copepod Temora longicornis. Ecography 26: 672–678.

    Article  Google Scholar 

  • Klais, R., M. Lehtiniemi, G. Rubene, A. Semenova, P. Margonski, K. Mäkinen, A. Ikauniece, M. Simm, A. Pollumäe, E. Griniene & H. Ojaveer, 2016. Comparison of spatial and temporal variability of zooplankton in a temperate semi-enclosed sea: implications for monitoring design and long-term studies. Journal of Plankton Research 38: 652–661.

    Article  Google Scholar 

  • Lehtiniemi, M. & E. Gorokhova, 2008. Predation of the introduced cladoceran Cercopagis pengoi on the native copepod Eurytemora affinis in the northern Baltic Sea. Marine Ecology Progress Series 362: 193–200.

    Article  Google Scholar 

  • Leppäranta, M., & K. Myrberg, 2009. Physical Oceanography of the Baltic Sea. Springer, Berlin. doi:10.1007/978-3-540-79703-6.

  • Ljunggren, L., A. Sandström, U. Bergström, J. Mattila, A. Lappalainen, G. Johansson, G. Sundblad, M. Casini, O. Kaljuste, & B. K. Eriksson, 2010. Recruitment failure of coastal predatory fish in the Baltic Sea coincident with an offshore ecosystem regime shift. ICES Journal of Marine Science: Journal du Conseil: fsq109. doi:10.1093/icesjms/fsq109.

  • Mackas, D. L. & G. Beaugrand, 2010. Comparisons of zooplankton time series. Journal of Marine Systems 79: 286–304.

    Article  Google Scholar 

  • Möllmann, C., R. Diekmann, B. Müller-Karulis, G. Kornilovs, M. Plikshs & P. Axe, 2009. Reorganization of a large marine ecosystem due to atmospheric and anthropogenic pressure: a discontinuous regime shift in the Central Baltic Sea. Global Change Biology 15: 1377–1393.

    Article  Google Scholar 

  • Möllmann, C., F. W. Köster, G. Kornilovs & L. Sidrevics, 2002. Long-term trends in abundance of cladocerans in the central Baltic Sea. Marine Biology 141: 343–352.

    Article  Google Scholar 

  • O'Brien, T., P. Wiebe, & T. Falkenhaug, (eds) 2013. ICES Zooplankton Status Report 2010/2011. ICES Cooperative Research Report No. 318.

  • Ojaveer, E., A. Lumberg & H. Ojaveer, 1998. Highlights of zooplankton dynamics in Estonian waters (Baltic Sea). ICES Journal of Marine Science: Journal du Conseil 55: 748–755.

    Article  Google Scholar 

  • Otto, S. A., R. Diekmann, J. Flinkman, G. Kornilovs & C. Möllmann, 2014. Habitat heterogeneity determines climate impact on zooplankton community structure and dynamics. PloS ONE 9: e90875. doi:10.1371/journal.pone.0090875.

    Article  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team, 2015. R: A language and environment for statistical computing. www.R-project.org (Accessed 15 March 2016).

  • Rajasilta, M., J. Eklund, P. Laine, N. Jönssön, & T. Lorenz, 2006. Intensive monitoring of spawning of the populatios of the Baltic herring (Clupea harengus membras L.). Final report of the study project reference number 96-068, 1997–1999. Archipelago Research Institute, Center for Environmental Research of the University of Turku, Turku.

  • Ranta, E. & I. Vuorinen, 1990. Changes of species abundance relations in marine meso-zooplankton at Seili, Northern Baltic Sea in 1967–1975. Aqua Fennica 20: 171–180.

    CAS  Google Scholar 

  • SAS Institute Inc, 2009. SAS/STAT® 9.2 User's Guide, 2nd ed. SAS Institute Inc., Cary, NC.

    Google Scholar 

  • Segerstråle, S. G., 1969. Biological fluctuations in the Baltic Sea. Progress in Oceanography 5: 169–184.

    Article  Google Scholar 

  • Suikkanen, S., S. Pulina, J. Engström-Öst, M. Lehtiniemi, S. Lehtinen & A. Brutemark, 2013. Climate change and eutrophication induced shifts in Northern summer plankton communities. PLoS ONE 8: e66475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Belle, G. & J. P. Hughes, 1984. Nonparametric tests for trend in water quality. Water Resources Research 20: 127–136.

    Article  Google Scholar 

  • Viitasalo, M., I. Vuorinen & E. Ranta, 1990. Changes in crustacean mesozooplankton and some environmental parameters in the Archipelago Sea (Northern Baltic) in 1976–1984. Ophelia 31: 207–217.

    Article  Google Scholar 

  • Viitasalo, M., M. Koski, K. Pellikka & S. Johansson, 1995. Seasonal and long-term variations in the body size of planktonic copepods in the northern Baltic Sea. Marine Biology 123: 241–250.

    Article  Google Scholar 

  • Virtaustutkimuksen neuvottelukunta, 1979. Saaristomeren virtaustutkimus (in Finnish). Saaristomeren tutkimuslaitos, Nauvo.

  • Visbeck, M. H., J. W. Hurrell, L. Polvani & H. M. Cullen, 2001. The North Atlantic Oscillation: past, present, and future. Proceedings of the National Academy of Sciences 98: 12876–12877.

    Article  CAS  Google Scholar 

  • Vuorinen, I., 1978. Vertical migration of Eurytemora (Crustacea, Copepoda): a compromise between the risks of predation and decreased fecundity. Journal of Plankton Research 9: 1037–1046.

    Article  Google Scholar 

  • Vuorinen, I., J. Hänninen & G. Kornilovs, 2003. Transfer-function modelling between environmental variation and mesozooplankton in the Baltic Sea. Progress in Oceanography 59: 339–356.

    Article  Google Scholar 

  • Vuorinen, I., J. Hänninen, M. Viitasalo, U. Helminen & H. Kuosa, 1998. Proportion of copepod biomass declines with decreasing salinity in the Baltic Sea. ICES Journal of Marine Science: Journal du Conseil 55: 767–774.

    Article  Google Scholar 

  • Vuorinen, I. & E. Ranta, 1987. Dynamics of marine meso-zooplankton at Seili, Northern Baltic Sea, in 1967–1975. Ophelia 28: 31–48.

    Article  Google Scholar 

Download references

Acknowledgements

The salinity and temperature data used in this study were provided by Pekka Alenius (FMI). The plankton analyses during 1991–2013 were done by the Company Zwerver (http://www.zwerver.fi/).

Author contributions

KM, IV, and JH conceived, designed, and executed the study; KM analysed the data; KM, IV, and JH wrote the manuscript.

Funding

This work was supported by grants donated from the Baltic Sea Fund by the Finnish Foundation for Nature Conservation [to K.M] and from the Seili Fund by Turku University Foundation [Grant number 9303 to K.M].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mäkinen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Jonne Kotta

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mäkinen, K., Vuorinen, I. & Hänninen, J. Climate-induced hydrography change favours small-bodied zooplankton in a coastal ecosystem. Hydrobiologia 792, 83–96 (2017). https://doi.org/10.1007/s10750-016-3046-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-3046-6

Keywords

Navigation