Skip to main content
Log in

Hygraula nitens, the only native aquatic caterpillar in New Zealand, prefers feeding on an alien submerged plant

  • PLANTS IN AQUATIC SYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Hygraula nitens is a New Zealand native moth with aquatic larvae that feed on submerged aquatic plants. The larvae have been mainly observed using native Potamogeton and Myriophyllum species as a food source, although some studies reported larvae feeding on the alien macrophytes Hydrilla verticillata, Lagarosiphon major and Ceratophyllum demersum. Experimental mesocosm studies showed larvae had a major effect on H. verticillata, C. demersum, L. major, Elodea canadensis and Egeria densa. In both no choice and choice experiments H. nitens larvae showed a clear preference for and the highest consumption of C. demersum, while the native macrophyte Myriophyllum triphyllum ranked fourth out of five alien and two native plant species, indicating a preference of the larvae for alien macrophytes. Additional choice experiments using C. demersum, sampled from different waters in NZ, illustrated that there was a clear difference in H. nitens preference for plants based on their source. However although C. demersum had the lowest leaf dry matter content (LDMC) compared with the other macrophytes, neither the LDMC nor leaf carbon, nitrogen, phosphorus or total phenolic contents alone could explain the preferences of H. nitens, and we conclude that food choice is based on a combination of these and/or additional factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barrat-Segretain, M. H. & D. G. Lemoine, 2007. Can snail herbivory influence the outcome of competition between Elodea species? Aquatic Botany 86: 157–162.

    Article  Google Scholar 

  • Berg, C. O., 1950. Biology of certain aquatic caterpillars (Pyralididae: Nymphula spp.) which feed on Potamogeton. Transactions of the American Microscopical Society 69: 254–266.

    Article  Google Scholar 

  • Biggs, B. J. F. & T. J. Malthus, 1982. Macroinvertebrates associated with various aquatic macrophytes in the backwaters and lakes of the upper Clutha Valley, New Zealand. New Zealand Journal of Marine and Freshwater Research 16: 81–88.

    Article  Google Scholar 

  • Boedeltje, G., J. P. Bakker, R. M. Bekker, J. M. Van Groenendael & M. Soesbergen, 2003. Plant dispersal in a lowland stream in relation to occurrence and three specific life-history traits of the species in the species pool. Journal of Ecology 91: 855–866.

    Article  Google Scholar 

  • Burlakova, L. E., A. Y. Karatayev, D. K. Padilla, L. D. Cartwright & D. N. Hollas, 2009. Wetland Restoration and Invasive Species: apple snail (Pomacea insularum) feeding on native and invasive aquatic plants. Restoration Ecology 17: 433–440.

    Article  Google Scholar 

  • Carlsson, N. O. L., C. Brönmark & L. A. Hansson, 2004. Invading herbivory: the golden apple snail alters ecosystem functioning in Asian wetlands. Ecology 85: 1575–1580.

    Article  Google Scholar 

  • Carmona, D. M., J. Lajeunesse & M. T. J. Johnson, 2011. Plant traits that predict resistance to herbivores. Functional Ecology 25: 358–367.

    Article  Google Scholar 

  • Choi, C., C. Bareiss, O. Walenciak & E. M. Gross, 2002. Impact of polyphenols on growth of the aquatic herbivore Acentria ephemerella. Journal of Chemical Ecology 28: 2245–2256.

    Article  CAS  PubMed  Google Scholar 

  • Center, T. D., K. V. Thai, F. A. Dray Jr, S. J. Franks, M. T. Rebelob, P. D. Pratt & M. B. Rayamajhi, 2005. Herbivory alters competitive interactions between two invasive aquatic plants. Biological Control 33: 173–185.

    Article  Google Scholar 

  • Colautti, R. I., A. Ricciardi, I. A. Grigorovich & H. J. MacIsaac, 2004. Is invasion success explained by the enemy release hypothesis? Ecology Letters 7: 721–733.

    Article  Google Scholar 

  • Common, I. F. B., 1990. Moths of Australia. Melbourne University Press, Melbourne: fig. 33.1, p. 346, 352.

  • Cronin, G., D. M. Lodge, M. E. Hay, M. Miller, A. M. Hill, T. Horvath, R. C. Bolser, N. Lindquist & M. Wahl, 2002. Crayfish feeding preferences for freshwater macrophytes: the influence of plant structure and chemistry. Journal of Crustacean Biology 22: 708–718.

    Article  Google Scholar 

  • Cyr, H. & M. L. Pace, 1993. Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature 361: 148–150.

    Article  Google Scholar 

  • Dean, C., J. Day, R. E. Gozlan & A. Diaz, 2015. Grazing vertebrates promote invasive Swamp Stonecrop (Crassula helmsii) abundance. Invasive Plant Science and Management 8: 131–138.

    Article  Google Scholar 

  • Dorenbosch, M. & E. S. Bakker, 2011. Herbivory in omnivorous fishes: effect of plant secondary metabolites and prey stoichiometry. Freshwater Biology 56: 1783–1797.

    Article  Google Scholar 

  • Dugdale, J. S., 1988. Lepidoptera - annotated catalogue, and keys to family-group taxa. Fauna of New Zealand, Number 14. DSIR Science Information Publishing Centre, Wellington.

    Google Scholar 

  • Elger, A. & D. Lemoine, 2005. Determinants of macrophyte palatability to the pond snail Lymnaea stagnalis. Freshwater Biology 50: 86–95.

    Article  Google Scholar 

  • Elger, A. & N. J. Willby, 2003. Leaf dry matter content as an integrative expression of plant palatability: the case of freshwater macrophytes. Functional Ecology 17: 58–65.

    Article  Google Scholar 

  • Elger, A., T. D. Boer & M. E. Hanley, 2007. Invertebrate herbivory during the regeneration phase: experiments with a freshwater angiosperm. Journal of Ecology 95: 106–114.

    Article  Google Scholar 

  • Erhard, D., G. Pohnert & E. M. Gross, 2007. Chemical defense in Elodea nuttallii reduces feeding and growth of aquatic herbivorous Lepidoptera. Journal of Chemical Ecology 33: 1646–1661.

    Article  CAS  PubMed  Google Scholar 

  • Fornoff, F. & E. M. Gross, 2014. Induced defense mechanisms in an aquatic angiosperm to insect herbivory. Oecologia 175: 173–185.

    Article  PubMed  Google Scholar 

  • Garnier, E., B. Shipley, C. Roumet & G. Laurent, 2001. A standardized protocol for the determination of specific leaf area and leaf dry matter content. Functional Ecology 15: 688–695.

    Article  Google Scholar 

  • Gross, E. M. & E. S. Bakker, 2012. The role of plant secondary metabolites in freshwater macrophyte-herbivore interactions: limited or unexplored chemical defences? In Jasen, G. R., M. Dicke & S. E. Hartley (eds), The ecology of plant secondary metabolites: from genes to global process. Cambridge University Press, Cambridge.

    Google Scholar 

  • Gross, E. M., R. Johnson & H. Nelson, 2001. Experimental evidence for changes in submersed macrophyte species composition caused by the herbivore Acentria ephemerella (Lepidoptera). Oecologia 127: 105–114.

    Article  PubMed  Google Scholar 

  • Gross, E. M., A. Brune & O. Walenciak, 2008. Gut pH, redox conditions and oxygen levels in an aquatic caterpillar: potential effects on the fate of ingested tannins. Journal of Insect Physiology 54: 462–471.

    Article  CAS  PubMed  Google Scholar 

  • Grutters, B. M. C., E. M. Gross & E. S. Bakker, 2015. Insect herbivory on native and exotic aquatic plants: phosphorus and nitrogen drive insect growth and nutrient release. Hydrobiologia. doi:10.1007/s10750-015-2448-1.

    Google Scholar 

  • Habeck, D. H. & J. K. Balciunas, 2005. Larvae of Nymphulinae (Lepidoptera: Pyralidae) associated with Hydrilla verticillata (Hydrocharitaceae) in North Queensland. Australian Journal of Entomology 44: 354–363.

    Article  Google Scholar 

  • Heger, T. & J. M. Jeschke, 2014. The enemy release hypothesis as a hierarchy of hypotheses. Oikos 123: 741–750.

    Article  Google Scholar 

  • Johnson, R. L., E. M. Gross & N. G. Hairston Jr, 1998. Decline of the invasive submersed macrophyte Myriophyllum spicatum (Haloragaceae) associated with herbivory by larvae of Acentria ephemerella (Lepidoptera). Aquatic Ecology 31: 273–282.

    Article  Google Scholar 

  • Le Bagousse-Pinguet, Y., E. M. Gross & D. Straile, 2012. Release from competition and protection determine the outcome of plant interactions along a grazing gradient. Oikos 121: 95–101.

    Article  Google Scholar 

  • Lodge, D. M., 1991. Herbivory on freshwater macrophytes. Aquatic Botany 41: 195–224.

    Article  Google Scholar 

  • Lodge, D. M., G. Cronin, E. van Donk & A. J. Froelich, 1998. Impact of herbivory on plant standing crop: comparisons among biomes, between vascular and nonvascular plants, and among freshwater herbivore taxa. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The structuring role of submerged macrophytes in lakes. Springer, New York.

    Google Scholar 

  • Marko, M. D., E. M. Gross, R. M. Newman & F. K. Gleason, 2008. Chemical profile of the North American native Myriophyllum sibiricum compared to the invasive M. spicatum. Aquatic Botany 88: 57–65.

    Article  CAS  Google Scholar 

  • Miler, O., M. Korn & D. Straile, 2009. Experimental evidence for a strong influence of stickleback predation on the population dynamics and sex ratio of an aquatic moth. Fundamental and Applied Limnology 173: 187–196.

    Article  Google Scholar 

  • Miler, O., E. M. Gross & D. Straile, 2015. Small-scale variation in sexual size dimorphisms and sex ratio in the aquatic moth Acentria ephemerella Denis and Schiffermüller, 1775 (Lepidoptera: Crambidae). Aquatic Insects 36: 187–199.

    Article  Google Scholar 

  • Mortenson S. G., Weisberg P. J. & Ralsto B. E., 2008. Do beavers promote the invasion of non-native Tamarix in the Grand Canyon riparian zone? Wetlands 28: 666–675.

    Article  Google Scholar 

  • Newman, R. M., 1991. Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. Journal of the North American Benthological Society 10: 89–114.

    Article  Google Scholar 

  • Newman, R. M., 2004. Biological control of Eurasian watermilfoil by aquatic insects: basic insights from an applied problem. Archiv für Hydrobiologie 159: 145–184.

    Article  Google Scholar 

  • Parker, J. D. & M. E. Hay, 2005. Biotic resistance to plant invasions? Native herbivores prefer non-native plants. Ecology Letters 8: 959–967.

    Article  Google Scholar 

  • Parker, J. D., C. C. Caudill & M. E. Hay, 2007. Beaver herbivory on aquatic plants. Oecologia 151: 616–625.

    Article  PubMed  Google Scholar 

  • Rothhaupt, K. O., F. Fornoff & E. Yohannes, 2015. Induced responses to grazing by an insect herbivore (Acentria ephemerella) in an immature macrophyte (Myriophyllum spicatum): an isotopic study. Ecology and Evolution 5: 3657–3665.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wells, R. D. S., M. de Winton & J. S. Clayton, 1997. Successive macrophyte invasions within the submerged flora of Lake Tarawera, Central North Island, New Zealand. New Zealand Journal of Marine and Freshwater Research 31: 449–459.

    Article  CAS  Google Scholar 

  • Winterbourn, M. J. & K. L. D. Gregson, 1981. Guide to the aquatic insects of New Zealand. Bulletin of the Entomological Society of New Zealand 5: 1–80.

    Google Scholar 

  • Winterbourn, M. J., K. L. D. Gregson & C. H. Dolphin, 2006. Guide to the Aquatic Insects of New Zealand, 4th Edition. Bulletin of the Entomological Society of New Zealand 14: 1–108.

    Google Scholar 

  • Xiong, W., D. Yu, Q. Wang, C. Liu & L. Wang, 2008. A snail prefers native over exotic freshwater plants: implications for the enemy release hypotheses. Freshwater Biology 53: 2256–2262.

    Google Scholar 

Download references

Acknowledgments

We heartily acknowledge the helpful comments by L. Bakker and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Redekop.

Additional information

Guest editors: M. T. O’Hare, F. C. Aguiar, E. S. Bakker & K. A. Wood / Plants in Aquatic Systems – a 21st Century Perspective

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redekop, P., Gross, E.M., Nuttens, A. et al. Hygraula nitens, the only native aquatic caterpillar in New Zealand, prefers feeding on an alien submerged plant. Hydrobiologia 812, 13–25 (2018). https://doi.org/10.1007/s10750-016-2709-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2709-7

Keywords

Navigation