Skip to main content
Log in

Molecular evidence for further overlooked species within the Gammarus fossarum complex (Crustacea: Amphipoda)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The freshwater amphipod Gammarus fossarum Koch, in Panzer, 1836 is a locally abundant keystone species mainly occuring in European headwaters but also in larger rivers. Genetic studies in the past 25 years have revealed three cryptic species within nominal G. fossarum (types A, B and C). Assignments of specimens to these types were based on allozyme and 16S markers. Today, a fragment of the cytochrome c oxidase subunit 1 (CO1) is primarily used as a genetic marker for species assignments (‘DNA Barcoding’), yet not a single CO1 sequence of G. fossarum is available in the Barcode of Life Database. We analysed new CO1 and 16S data for German, Hungarian and Croatian G. fossarum specimens and compared them with 16S and CO1 sequences of G. fossarum from GenBank. Thereby, we close the gap between traditional allozyme- and 16S-based species assignments and modern CO1 barcoding. Studying genetic variation in 55 specimens from 29 populations, we identified between 11 and 23 novel and genetically distinct clades using distance- and tree-based methods. Our results suggest that G. fossarum comprises several additional, yet unrecognised, species in particular from the Balkan region. Therefore, a taxonomic revision and biogeographic reconsideration of the G. fossarum complex is urgently needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baird, H., K. Miller & J. Stark, 2011. Evidence of hidden biodiversity, ongoing speciation and diverse patterns of genetic structure in giant Antarctic amphipods. Molecular Ecology 20: 3439–3454.

    Article  PubMed  Google Scholar 

  • Benson, D., M. Boguski, D. Lipman, J. Ostell, B. Ouellette, B. Rapp & D. Wheeler, 1999. GenBank. Nucleic Acids Research 27: 12.

    Google Scholar 

  • Bergsten, J., D. Bilton, T. Fujisawa, M. Elliott, M. Monaghan, M. Balke, L. Hendrich, J. Geijer, J. Herrmann & G. Foster, 2012. The effect of geographical scale of sampling on DNA barcoding. Systematic Biology 61: 851–869.

    Article  PubMed  Google Scholar 

  • Costa, F., J. deWaard, J. Boutillier, S. Ratnasingham, R. Dooh, M. Hajibabaei & P. Hebert, 2007. Biological identifications through DNA barcodes: the case of the Crustacea. Canadian Journal of Fisheries and Aquatic Sciences 64: 272–295.

    Article  CAS  Google Scholar 

  • Costa, F., C. Henzler, D. Lunt, N. Whiteley & J. Rock, 2009. Probing marine Gammarus (Amphipoda) taxonomy with DNA barcodes. Systematics and Biodiversity 7: 365–379.

    Article  Google Scholar 

  • Cummins, K., 1975. The Ecology of Running Waters: Theory and Practice. Proceedings of the Sandusky River Basin Symposium International Joint Committee on the Great Lakes, Tiffin, OH: 277–293.

  • Cummins, K. & M. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147–172.

    Article  Google Scholar 

  • Drummond, A., B. Ashton, S. Buxton, M. Cheung, A. Cooper, C. Duran, M. Field, J. Heled, M. Kearse, S. Markowitz, R. Moir, S. Stones-Havas, S. Sturrock, T. Thierer & A. Wilson, 2011. Geneious v5.4.6. Available from http://www.geneious.com.

  • Drummond, A., M. Suchard, D. Xie & A. Rambaut, 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973.

    Article  PubMed  CAS  Google Scholar 

  • Ethridge, J., J. Gibson & C. Nice, 2013. Cryptic diversity within and amongst spring-associated Stygobromus amphipods (Amphipoda: Crangonyctidae). Zoological Journal of the Linnean Society 167: 227–242.

    Article  Google Scholar 

  • Excoffier, L. & H. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.

    Article  PubMed  Google Scholar 

  • Ezard, T., T. Fujisawa & T. Barraclough, 2009. Splits: SPecies’ LImits by Threshold Statistics. R package version 1.0-14/r31. http://R-Forge.R-project.org/projects/splits/.

  • Feckler, A., A. Thielsch, K. Schwenk, R. Schulz & M. Bundschuh, 2012. Differences in the sensitivity among cryptic lineages of the Gammarus fossarum complex. Science of the Total Environment 439: 158–164.

    Google Scholar 

  • Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.

    PubMed  CAS  Google Scholar 

  • Fujisawa, T. & T. Barraclough, 2013. Delimiting species using single-locus data and the generalized mixed Yule coalescent (GMYC) approach: a revised method and evaluation on simulated datasets. Systematic Biology 0: 1–18.

    Google Scholar 

  • Goedmakers, A., 1972. Gammarus fossarum Koch, 1835: redescription based on neotype material and notes on its local variation (Crustacea, Amphipoda). Bijdragen Tot De Dierkunde 42: 124–138.

    Google Scholar 

  • Goedmakers, A., 1980. Microgeographic races of Gammarus fossarum Koch, 1836. Crustaceana Supplement 6: 216–224.

    Google Scholar 

  • Goldstein, P. & R. DeSalle, 2011. Integrating DNA barcode data and taxonomic practice: determination, discovery, and description. Bioessays 33: 135–147.

    Article  PubMed  Google Scholar 

  • Havermans, C., Z. Nagy, G. Sonet, C. De Broyer & P. Martin, 2010. Incongruence between molecular phylogeny and morphological classification in amphipod crustaceans: a case study of Antarctic lysianassoids. Molecular Phylogenetics and Evolution 55: 202–209.

    Article  PubMed  Google Scholar 

  • Hebert, P., A. Cywinska, S. Ball & J. deWaard, 2003a. Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences 270: 313–321.

    Article  PubMed  CAS  Google Scholar 

  • Hebert, P., S. Ratnasingham & J. deWaard, 2003b. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences 270(Suppl 1): S96–S99.

    Article  PubMed  CAS  Google Scholar 

  • Hebert, P. & J. Landry, 2010. DNA barcodes for 1/1000 of the animal kingdom. Biology Letters 6: 359–362.

    Article  PubMed  CAS  Google Scholar 

  • Hebert, P., M. Stoeckle, T. Zemlak & C. Francis, 2004. Identification of birds through DNA barcodes. PLoS Biology 2: 312.

    Google Scholar 

  • Hou, Z., J. Fu & S. Li, 2007. A molecular phylogeny of the genus Gammarus (Crustacea: Amphipoda) based on mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution 45: 596–611.

    Google Scholar 

  • Hou, Z. & S. Li, 2010. Intraspecific or interspecific variation: delimitation of species boundaries within the genus Gammarus (Crustacea, Amphipoda, Gammaridae), with description of four new species. Zoological Journal of the Linnean Society 160: 215–253.

    Google Scholar 

  • Hou, Z., Z. Li & S. Li, 2009. Identifying Chinese species of Gammarus (Crustacea: Amphipoda) using DNA barcoding. Current Zoology 52: 158–164.

    Google Scholar 

  • Hou, Z., B. Sket, C. Fišer & S. Li, 2011. Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proceedings of the National Academy of Sciences of the USA 108: 14533–14538.

    Article  PubMed  CAS  Google Scholar 

  • Jażdżewski, K., 1977. Remarks on the morphology of Gammarus fossarum Koch, 1835, and Gammarus kischineffensis Schellenberg, 1937. Crustaceana Supplement 4: 201–211.

  • Katoh, K., K. Misawa, K. Kuma & T. Miyata, 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059–3066.

    Article  PubMed  CAS  Google Scholar 

  • Lohse, K., 2009. Can mtDNA barcodes be used to delimit species? A response to Pons et al., (2006). Systematic Biology 58(4): 439–442.

    Article  PubMed  Google Scholar 

  • Lörz, A. & C. Held, 2004. A preliminary molecular and morphological phylogeny of the Antarctic Epimeriidae and Iphimediidae (Crustacea, Amphipoda). Molecular Phylogenetics and Evolution 31: 4–15.

    Article  PubMed  Google Scholar 

  • Macdonald III, K. S., L. Yampolsky & J. Duffy, 2005. Molecular and morphological evolution of the amphipod radiation of Lake Baikal. Molecular Phylogenetics and Evolution 35: 323–343.

    Article  PubMed  CAS  Google Scholar 

  • MacNeil, C., J. Dick & R. Elwood, 1997. The trophic ecology of freshwater Gammarus spp. (Crustacea: Amphipoda): problems and perspectives concerning the functional feeding group concept. Biological Reviews 72: 349–364.

    Article  Google Scholar 

  • Meyer, C. P. & G. Paulay, 2005. DNA barcoding: error rates based on comprehensive sampling. PLoS Biology 3: e422.

    Article  PubMed  Google Scholar 

  • Meyran, J., M. Monnerot & P. Taberlet, 1997. Taxonomic status and phylogenetic relationships of some species of the genus Gammarus (Crustacea, Amphipoda) deduced from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 8: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Monaghan, M., R. Wild, M. Elliot, T. Fujisawa, M. Balke, D. Inward, D. Lees, R. Ranaivosolo, P. Eggleton, T. Barraclough & A. Vogler, 2009. Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Systematic Biology 58: 298–311.

    Article  PubMed  CAS  Google Scholar 

  • Moret, Y., L. Bollache, R. Wattier & T. Rigaud, 2007. Is the host or the parasite the most locally adapted in an amphipod–acanthocephalan relationship? A case study in a biological invasion context. International Journal for Parasitology 37: 637–644.

    Google Scholar 

  • Müller, J., 1998. Genetic population structure of two cryptic Gammarus fossarum types across a contact zone. Journal of Evolutionary Biology 11: 79–101.

    Article  Google Scholar 

  • Müller, J., 2000. Mitochondrial DNA variation and the evolutionary history of cryptic Gammarus fossarum types. Molecular Phylogenetics and Evolution 15: 260–268.

    Article  PubMed  Google Scholar 

  • Müller, J., E. Partsch & A. Link, 2000. Differentiation in morphology and habitat partitioning of genetically characterized Gammarus fossarum forms (Amphipoda) across a contact zone. Biological Journal of Linnean Society 69: 41–53.

    Article  Google Scholar 

  • Palumbi, S., A. Martin, S. Romano, W. Mcmillan, L. Stice & G. Grabowski, 1991. The Simple Fool’s Guide to PCR. A Collection of PCR Protocols, Version 2. University of Hawaii, Honolulu.

  • Pauls, S., H. Lumbsch & P. Haase, 2006. Phylogeography of the montane caddisfly Drusus discolor: evidence for multiple refugia and periglacial survival. Molecular Ecology 15: 2153–2169.

    Article  PubMed  CAS  Google Scholar 

  • Pinkster, S., 1983. The value of morphological characters in taxonomy of Gammarus. Beaufortia 33: 15–28.

    Google Scholar 

  • Pinkster, S. & M. Scheepmaker, 1994. Hybridization experiments and the taxonomy of Gammarus (Amphipoda): a contribution to the understanding of controversial results. Crustaceana 66(2): 129–143.

    Article  Google Scholar 

  • Pons, J., T. G. Barraclough, J. Gomez-Zurita, A. Cardoso, D. P. Duran, S. Hazell, S. Kamoun, W. D. Sumlin & A. P. Vogler, 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55: 595–609.

    Article  PubMed  Google Scholar 

  • Posada, D., 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.

    Article  PubMed  CAS  Google Scholar 

  • Puillandre, N., A. Lambert, S. Brouillet & G. Achaz, 2012. ABGD, automatic barcode gap discovery for primary species delimitation. Molecular Ecology 21: 1864–1877.

    Article  PubMed  CAS  Google Scholar 

  • R Core Team, 2012. R: A Language and Environmental for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

  • Radulovici, A., P. Archambault & F. Dufresne, 2010. DNA barcodes for marine biodiversity: moving fast forward? Diversity 2: 450–472.

    Article  CAS  Google Scholar 

  • Radulovici, A., B. Sainte-Marie & F. Dufresne, 2009. DNA barcoding of marine crustaceans from the Estuary and Gulf of St Lawrence: a regional-scale approach. Molecular Ecology Resources 9 (Suppl 1): 181–187.

    Google Scholar 

  • Rambaut, A. & A. Drummond, 2007. http://beast.bio.ed.ac.uk/Tracer.

  • Ratnasingham, S. & P. Hebert, 2007. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes 7: 355–364.

  • Rock, J., J. Ironside, T. Potter, N. Whiteley & D. Lunt, 2007. Phylogeography and environmental diversification of a highly adaptable marine amphipod, Gammarus duebeni. Heredity 99: 102–111.

    Article  PubMed  CAS  Google Scholar 

  • Rögl, F., 1999. Mediterranean and Paratethys. Facts and hypotheses of an oligocene to miocene paleogeography (short overview). Geologica Carpathica 50(4): 339–349.

    Google Scholar 

  • Ronquist, F., M. Teslenko, P. van der Mark, D. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. Suchard & J. Huelsenbeck, 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.

    Article  PubMed  Google Scholar 

  • Roux, A., 1970. Les Gammares du groupe pulex. Essai de systématique biologique. Archives de Zoologie Expérimentale et Générale 111: 313–356.

    Google Scholar 

  • Scheepmaker, M. & J. van Dalfsen, 1989. Genetic differentiation in Gammarus fossarum and G. caparti (Crustacea, Amphipoda) with reference to G. pulex pulex in north-western Europe. Bijdragen Tot De Dierkunde 59: 127–139.

    Google Scholar 

  • Siegismund, H., 1988. Genetic differentiation in populations of freshwater amphipods Gammarus roeseli and Gammarus fossarum. Hereditas 109: 269–276.

    Article  Google Scholar 

  • Siegismund, H. & J. Müller, 1991. Genetic structure of Gammarus fossarum populations. Heredity 66: 419–436.

    Article  Google Scholar 

  • Stamatakis, A., 2008. The RAxML 7.0.4. Department of Computer Science Ludwig-Maximilians-Universität München.

  • Stürzbecher, C., J. Müller & A. Seitz, 1998. Coexisting Gammarus fossarum Types (Amphipoda) in Central Europe: Regular Patterns of Population Dynamics and Microdistribution. Proceedings of the Fourth International Crustacean Congress, Amsterdam: 287–293.

  • Sunnucks, P. & D. Hales, 1996. Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution 13: 510–524.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.

    Article  PubMed  CAS  Google Scholar 

  • Tang, C., F. Leasi, U. Obertegger, A. Kieneke, T. Barraclough & D. Fontaneto, 2012. The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proceedings of the National Academy of Sciences of the USA 109: 16208–16212.

    Article  PubMed  CAS  Google Scholar 

  • Tautz, D., P. Arctander, A. Minelli, R. H. Thomas & A. P. Vogler, 2003. A plea for DNA taxonomy. Trends in Ecology and Evolution 18: 70–74.

    Article  Google Scholar 

  • Westram, A., J. Jokela, C. Baumgartner & I. Keller, 2011. Spatial distribution of cryptic species diversity in European freshwater amphipods (Gammarus fossarum) as revealed by pyrosequencing. PLoS One 6: e23879.

    Article  PubMed  CAS  Google Scholar 

  • Williams, P., M. Brown, J. Carolan, J. An, D. Goulson, A. Aytekin, L. Best, A. Byvaltsev, B. Cederberg & R. Dawson, 2012. Unveiling cryptic species of the bumblebee subgenus Bombus s. str. worldwide with CO1 barcodes (Hymenoptera: Apidae). Systematics and Biodiversity 10: 1, 21–56.

    Google Scholar 

  • Witt, J., D. Threloff & P. Hebert, 2006. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Molecular Ecology 15: 3073–3082.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ralph Tollrian (Ruhr University Bochum, Germany) for helpful discussions and support. Furthermore, we thank Julia Maria Vollmer (Ruhr University Bochum, Germany) for laboratory support. Florian Altermatt (Swiss Federal Institute of Aquatic Science and Technology, EAWAG), Mark Harrison (University of Leicester, United Kingdom) and two anonymous reviewers contributed helpful comments and suggestions that substantially improved this manuscript. Special thanks to Gerd Mayer (University of Ulm, Germany) for his efforts in collecting and providing us with the southern German samples. We are indebted to Géza Selmeczy (University of Pannonia, Hungary), Maria Špoljar & Krešimir Žganec (University of Zagreb, Croatia) and Anne-Marie Westram and Florian Altermatt (Swiss Federal Institute of Aquatic Science and Technology, EAWAG) for kindly providing us additional specimens for analysis. This project was funded by a fund grant of the Ruhr University’s rectorate to FL. FL and MW are supported by a grant of the Kurt Eberhard Bode foundation within the Deutsches Stiftungszentrum (DSZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Leese.

Additional information

Handling editor: Diego Fontaneto

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, M., Macher, J.N., Seefeldt, M.A. et al. Molecular evidence for further overlooked species within the Gammarus fossarum complex (Crustacea: Amphipoda). Hydrobiologia 721, 165–184 (2014). https://doi.org/10.1007/s10750-013-1658-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1658-7

Keywords

Navigation