Skip to main content

Advertisement

Log in

Response of benthic macroinvertebrates to whole-lake, non-native fish treatments in mid-elevation lakes of the Trinity Alps, California

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Introduced fish reduce the abundance and diversity of native aquatic fauna, but the effect can be reduced in complex habitats. We manipulated fish populations in forested mountain lakes to determine whether or not fish affected benthic macroinvertebrate composition across lakes with differing habitat complexity. We compared abundance, biomass, body-length, and community structure of benthic macroinvertebrates from 16 lakes with three treatments (fish stocked, suspended stocking, fish removed) and unstocked fishless “controls”. Over 4 years, we assessed the relative importance of fish and environmental variables influencing the composition of benthic macroinvertebrates. Control lakes had the greatest overall abundance of macroinvertebrates when chironomid midges were excluded. Abundances of insects in the clinger/swimmer functional group and caddisflies were greatest in the control lakes but were primarily influenced by habitat variables including the availability of aquatic vegetation and wood. Total biomass and mean body length of macroinvertebrates were not affected by treatment. Taxon richness of macroinvertebrates was about 40% greater in the control lakes compared to the treatment lakes but did not differ among treatments. Our results suggest that fish reduce susceptible macroinvertebrate richness and abundances, but that changes associated with alterations of fish composition are confounded by other factors in complex lake habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson, D. R., 2008. Model-Based Inference in the Life Sciences: A Primer on Evidence. Springer, New York.

    Book  Google Scholar 

  • Angeler, D. G. & J. M. Moreno, 2007. Zooplankton community resilience after press-type anthropogenic stress in temporary ponds. Ecological Applications 17: 1105–1115.

    Article  PubMed  Google Scholar 

  • Angelon, K. A. & J. W. Petranka, 2002. Chemicals of predatory mosquitofish (Gambusia affinis) influence selection of oviposition site by Culex mosquitoes. Journal of Chemical Ecology 28: 797–806.

    Article  PubMed  CAS  Google Scholar 

  • Armitage, P. D., P. S. Cranston & L. C. V. Pinder, 1995. The Chironomidae: biology and ecology of non-biting midges. Springer, New York.

    Google Scholar 

  • Bates, D. M. & M. Maechler, 2010. Lme4: Linear mixed-effects models using S4 classes.

  • Baxter, C. V., K. D. Fausch, M. Murakami & P. L. Chapman, 2004. Fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies. Ecology 85: 2656–2663.

    Article  Google Scholar 

  • Beresford, A. L. & J. I. Jones, 2010. Weedbeds and big bugs: the importance of scale in detecting the influence of nutrients and predation on macroinvertebrates in plant-dominated shallow lakes. Freshwater Biology 55: 514–530.

    Article  CAS  Google Scholar 

  • Blumenshine, S. C., D. M. Lodge & J. R. Hodgson, 2000. Gradient of fish predation alters body size distributions of lake benthos. Ecology 81: 374–386.

    Google Scholar 

  • Boll, T., L. S. Johansson, T. L. Lauridsen, F. Landkildehus, T. A. Davidson, M. Søndergaard, F. Ø. Andersen & E. Jeppesen, 2012. Changes in benthic macroinvertebrate abundance and lake isotope (C, N) signals following biomanipulation: an 18-year study in shallow Lake Vaeng, Denmark. Hydrobiologia 686: 135–145.

    Article  CAS  Google Scholar 

  • Camargo, J. A., 1995. On measuring species evenness and other associated parameters of community structure. Oikos 74: 538–542.

    Article  Google Scholar 

  • Carlisle, D. M. & C. P. Hawkins, 1998. Relationships between invertebrate assemblage structure, two trout species, and habitat structure in Utah mountain lakes. Journal of the North American Benthological Society 17: 286–300.

    Article  Google Scholar 

  • Caudill, C. C., 2003. Empirical evidence for nonselective recruitment and a source-sink dynamic in a mayfly metapopulation. Ecology 84: 2119–2132.

    Article  Google Scholar 

  • Caudill, C. C., 2005. Trout predators and demographic sources and sinks in a mayfly metapopulation. Ecology 86: 935–946.

    Article  Google Scholar 

  • Caudill, C. C. & B. L. Peckarsky, 2003. Lack of appropriate behavioral or developmental responses by mayfly larvae to trout predators. Ecology 84: 2133–2144.

    Article  Google Scholar 

  • Chivers, D. P., B. D. Wisenden & R. J. F. Smith, 1996. Damselfly larvae learn to recognize predators from chemical cues in the predator’s diet. Animal Behavior 52: 315–320.

    Article  Google Scholar 

  • Coleman, R. G. & A. R. Kruckeberg, 1999. Geology and plant life of the Klamath-Siskiyou Mountain region. Natural Areas Journal 19: 320–342.

    Google Scholar 

  • Cooper, S. D., 1984. The effects of trout on water striders in stream pools. Oecologia 63: 376–379.

    Article  Google Scholar 

  • Crowder, L. B. & W. E. Cooper, 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802–1813.

    Article  Google Scholar 

  • de Mendoza, G. & J. Catalan, 2010. Lake macroinvertebrates and the altitudinal environmental gradient in the Pyrenees. Hydrobiologia 648: 51–72.

    Article  Google Scholar 

  • de Mendoza, G., E. Rico & J. Catalan, 2012. Predation by introduced fish constrains the thermal distribution of aquatic Coleoptera in mountain lakes. Freshwater Biology 57: 803–814.

    Article  Google Scholar 

  • DellaSala, D. A., S. B. Reid, T. J. Frest, J. R. Strittholt & D. M. Olson, 1999. A global perspective on the biodiversity of the Klamath-Siskiyou Ecoregion. Natural Areas Journal 19: 300–319.

    Google Scholar 

  • Diehl, S., 1992. Fish predation and benthic community structure: the role of omnivory and habitat complexity. Ecology 73: 1646–1661.

    Article  Google Scholar 

  • Epanchin, P. N., R. A. Knapp & S. P. Lawler, 2010. Nonnative trout impact an alpine-nesting bird by altering aquatic insect subsidies. Ecology 91: 2406–2415.

    Article  PubMed  Google Scholar 

  • Fisher, J. C., W. E. Kelso & D. A. Rutherford, 2012. Macrophyte mediated predation on hydrilla-dwelling macroinvertebrates. Fundamental and Applied Limnology 181: 25–38.

    Article  Google Scholar 

  • García-Criado, F. & C. Trigal, 2005. Comparison of several techniques for sampling macroinvertebrates in different habitats of a North Iberian pond. Hydrobiologia 545: 103–115.

    Article  Google Scholar 

  • Gilinsky, E., 1984. The role of fish predation and spatial heterogeneity in determining benthic community structure. Ecology 65: 455–468.

    Article  Google Scholar 

  • Glaz, P., P. Sirois & C. Nozais, 2012. Determination of food sources for benthic invertebrates and brook trout Salvelinus fontinalis in Canadian boreal shield lakes using stable isotope analysis. Aquatic Biology 17: 107–117.

    Article  Google Scholar 

  • Herbst, D. B., E. L. Silldorff & S. D. Cooper, 2009. The influence of introduced trout on the benthic communities of paired headwater streams in the Sierra Nevada of California. Freshwater Biology 54: 1324–1342.

    Article  Google Scholar 

  • Hershey, A. E., 1985. Effects of predatory sculpin on the chironomid communities in an arctic lake. Ecology 66: 1131–1138.

    Article  Google Scholar 

  • Horne, A. J. & C. R. Goldman, 1994. Limnology. McGraw-Hill, Inc, New York: 576.

    Google Scholar 

  • Hothorn, T., F. Bretz & P. Westfall, 2008. Simultaneous inference in general parametric models. Biometrical Journal 50: 346–363.

    Article  PubMed  Google Scholar 

  • Joseph, M., J. Piovia-Scott, S. P. Lawler & K. L. Pope, 2010. Indirect effects of introduced trout on Cascades frogs (Rana cascadae) via shared aquatic prey. Freshwater Biology 56: 828–838.

    Article  Google Scholar 

  • Kadye, W. T. & A. J. Booth, 2012. Integrating stomach content and stable isotope analyses to elucidate the feeding habits of non-native sharptooth catfish Clarias gariepinus. Biological Invasions 14: 779–795.

    Google Scholar 

  • Knapp, R. A. & K. R. Matthews, 1998. Eradication of nonnative fish by gill netting from a small mountain lake in California. Restoration Ecology 6: 207–213.

    Google Scholar 

  • Knapp, R. A., K. R. Matthews & O. Sarnelle, 2001. Resistance and resilience of alpine lake fauna to fish introductions. Ecological Monographs 71: 401–421.

    Article  Google Scholar 

  • Knapp, R. A., C. P. Hawkins, J. Ladau & J. G. McClory, 2005. Fauna of Yosemite National Park lakes has low resistance but high resilience to fish introductions. Ecological Applications 15: 835–847.

    Article  Google Scholar 

  • Knight, T. M., M. W. McCoy, J. M. Chase, K. A. McCoy & R. D. Holt, 2005. Trophic cascades across ecosystems. Nature 437: 880–883.

    Article  PubMed  CAS  Google Scholar 

  • Lukacs, P. M., K. P. Burnham & D. R. Anderson, 2010. Model selection bias and Freedman’s paradox. Annals of the Institute of Statistical Mathematics 62: 117–125.

    Article  Google Scholar 

  • Macan, T. T., 1977. The influence of predation on the composition of fresh-water animal communities. Biological Reviews 52: 45–70.

    Article  PubMed  CAS  Google Scholar 

  • McNaught, A. S., D. W. Schindler, B. R. Parker, A. J. Paul, R. S. Anderson, D. B. Donald & M. Agbeti, 1999. Restoration of the food web of an alpine lake following fish stocking. Limnology and Oceanography 44: 127–136.

    Article  Google Scholar 

  • McPeek, M. A., 1998. The consequences of changing the top predator in a food web: a comparative experimental approach. Ecological Monographs 68: 1–23.

    Google Scholar 

  • Merritt, R. K., K. W. Cummins & M. B. Berg, 2008. An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Company, Dubuque.

    Google Scholar 

  • Morin, P. J., 1984. The impact of fish exclusion on the abundance and species composition of larval odonates: results of short-term experiments in a North Carolina farm pond. Ecology 65: 53–60.

    Article  Google Scholar 

  • Nystrom, P., O. Svensson, B. Lardner, C. Bronmark & W. Graneli, 2001. The influence of multiple introduced predators on a littoral pond community. Ecology 82: 1023–1039.

    Google Scholar 

  • Pierce, C. L., 1988. Predator avoidance, microhabitat shift, and risk-sensitive foraging in larval dragonflies. Oecologia 77: 81–90.

    Article  Google Scholar 

  • Pope, K. L., 2008. Assessing changes in amphibian population dynamics following experimental manipulations of introduced fish. Conservation Biology 22: 1572–1581.

    Article  PubMed  Google Scholar 

  • Pope, K. L., J. M. Garwood, H. H. Welsh Jr & S. P. Lawler, 2008. Evidence of impacts of introduced trout on native amphibians via facilitation of a shared predator. Biological Conservation 141: 1321–1331.

    Article  Google Scholar 

  • Pope, K. L., J. P. Scott & S. P. Lawler, 2009. Changes in aquatic insect emergence in response to whole-lake experimental manipulation of introduced trout. Freshwater Biology 54: 982–993.

    Article  Google Scholar 

  • R Development Core Team, D. M. Bates, J. Chambers, P. Dalgaard, S. Falcon, R. Gentleman, K. Hornik, S. Iacus, R. Ihaka, F. Leisch, T. Lumley, M. Maechler, D. Murdoch, P. Murrell, M. Plummer, B. D. Ripley, D. Sarkar, D. T. Lang, L. Tierney & S. Urbanek, 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria.

  • Resetarits, W. J., Jr, 2001. Colonization under threat of predation: avoidance of fish by anaquatic beetle, Tropisternus lateralis (Coleoptera: Hydrophilidae). Oecologia 129: 155–160.

    Article  Google Scholar 

  • Reshetnikov, A. N., 2003. The introduced fish, rotan (Perccottus glenii) depresses populations of aquatic animals (macroinvertebrates, amphibians, and a fish). Hydrobiologia 510: 83–90.

    Article  Google Scholar 

  • Sabo, J. L., J. L. Bastow & M. E. Power, 2002. Length–mass relationships for adult aquatic and terrestrial invertebrates in a California watershed. Journal of the North American Benthological Society 21: 336–343.

    Article  Google Scholar 

  • Schindler, D. E., R. A. Knapp & P. R. Leavitt, 2001. Alteration of nutrient cycles and algal production resulting from fish introductions into mountain lakes. Ecosystems 4: 308–321.

    Article  CAS  Google Scholar 

  • Sih, A., 1986. Antipredator responses and the perception of danger by mosquito larvae. Ecology 67: 434–441.

    Article  Google Scholar 

  • Simon, K. S. & C. R. Townsend, 2003. Impacts of freshwater invaders at different levels of ecological organization, with emphasis on salmonids and ecosystem consequences. Freshwater Biology 48: 982–994.

    Article  Google Scholar 

  • Stoks, R., M. A. McPeek & J. L. Mitchell, 2003. Evolution of prey behavior in response to changes in predation regime: damselflies in fish and dragonfly lakes. Evolution 57: 574–585.

    PubMed  CAS  Google Scholar 

  • Wellborn, G. A., D. K. Skelly & E. E. Werner, 1996. Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics 27: 337–363.

    Article  Google Scholar 

  • Welsh, H. H., Jr, K. L. Pope & D. Boiano, 2006. Sub-alpine amphibian distributions related to species palatability to non-native salmonids in the Klamath Mountains of northern California. Diversity and Distributions 12: 298–309.

    Article  Google Scholar 

  • Wohlfahrt, B., D. J. Mikolajewski, G. Joop & F. Suhling, 2006. Are behavioural traits in prey sensitive to the risk imposed by predatory fish? Freshwater Biology 51: 76–84.

    Article  Google Scholar 

Download references

Acknowledgments

We thank all the excellent field assistants who helped collect the data. M. Larson and M. Camann provided assistance with insect identification and G. Hodgson and M. Camann provided statistical help. G Hodgson helped with tables and figures. B. Harvey, D. Troxel, M. Mesler and M. Camann and two anonymous reviewers offered helpful comments on an earlier version of the manuscript. S. Lawler provided insight and expertise throughout the field phase of the project. Thanks to CDFW, especially B Bolster and E Pert for their endorsement and logistical support of the project. This research was funded by CDFG (ESA Section 6 grants E-2-F-21 and E-2-F-27), the National Science Foundation (DEB 0415505), UC Water Resources Center (W-987), and the UC Davis Wildlife Health Center. KLP received additional support from the US Forest Service Pacific Southwest Research Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen L. Pope.

Additional information

Handling editor: Katya E. Kovalenko

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pope, K.L., Hannelly, E.C. Response of benthic macroinvertebrates to whole-lake, non-native fish treatments in mid-elevation lakes of the Trinity Alps, California. Hydrobiologia 714, 201–215 (2013). https://doi.org/10.1007/s10750-013-1537-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1537-2

Keywords

Navigation