Skip to main content
Log in

Effect of temperature on submerged macrophyte litter decomposition within sediments from a large shallow and subtropical freshwater lake

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In shallow aquatic systems, the majority of organic matter mineralization occurs in the sediments. Several factors including temperature control mineralization rates, however, the underlying causes of the effects are not well understood in subtropical lakes. In this study, we determined the influence of temperature on organic matter degradation by taking sediments from four sites in a subtropical large shallow freshwater lake, and monitoring organic matter composition and enzymes in microcosm experiments at five temperatures from 5 to 40°C. Following a three-month incubation, it was found that the mineralization of submerged plants in sediments was strongly influenced by temperature. Removal efficiency of total organic carbon in sediments ranged from 4.3 to 22.6% at 5°C, and reached 46.7–55.5% at 40°C. In addition, the removal efficiency of organic matter and the relative recalcitrant carbon decomposition depended on sediment type. For sediments in the site located in the lake center, recalcitrant and labile carbon decomposition had equivalent responses to the different temperatures. For sediments with dominance of submerged macrophytes, the humic acids were low even at high temperature. Thus, the annual deposition of plant litter in sediments favored organic carbon decomposition rather than humification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baldwin, D. S. & A. Mitchell, 2012. Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment. Water Research 46: 965–974.

    Article  PubMed  CAS  Google Scholar 

  • Bastviken, D., L. J. Tranvik, J. A. Downing, P. M. Crill & A. Enrich-Prast, 2011. Freshwater methane emissions offset the continental carbon sink. Science 331: 50.

    Article  PubMed  CAS  Google Scholar 

  • Benner, R., M. A. Moran & R. E. Hodson, 1986. Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: relative contributions of procaryotes and eucaryotes. Limnology and Oceanography 31: 89–100.

    Article  Google Scholar 

  • Bergström, I., P. Kortelainen, J. Sarvala & K. Salonen, 2010. Effects of temperature and sediment properties on benthic CO2 production in an oligotrophic boreal lake. Freshwater Biology 55: 1747–1757.

    Google Scholar 

  • Buesing, N. & M. O. Gessner, 2006. Benthic bacterial and fungal productivity and carbon turnover in a freshwater marsh. Applied and Environmental Microbiology 72: 596–605.

    Article  PubMed  CAS  Google Scholar 

  • Canfield, D. E., B. B. Jørgensen, H. Fossing, R. Glud, J. Gundersen, N. B. Ramsing, B. Thamdrup, J. W. Hansen, L. P. Nielsen & P. O. J. Hall, 1993. Pathways of organic-carbon oxidation in three continental-margin sediments. Marine Geology 113: 27–40.

    Article  PubMed  CAS  Google Scholar 

  • Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg & J. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 172–184.

    Article  Google Scholar 

  • Dean, W. E. & E. Gorham, 1998. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26: 535–538.

    Article  Google Scholar 

  • de Boer, W., L. B. Folman, R. C. Summerbell & L. Boddy, 2005. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiology Reviews 29: 795–811.

    Article  PubMed  Google Scholar 

  • den Heyer, C. & J. Kalff, 1998. Organic matter mineralization rates in sediments: a within- and among-lake study. Limnology and Oceanography 43: 695–705.

    Article  Google Scholar 

  • Dong, X. H., N. J. Anderson, X. D. Yang, X. Chen & J. Shen, 2012. Carbon burial by shallow lakes on the Yangtze floodplain and its relevance to regional carbon sequestration. Global Chang Biology 18: 2205–2217.

    Article  Google Scholar 

  • Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers & F. Smith, 1956. Colorimetric method for determination of sugars and related substances. Analytic Chemistry 28: 350–356.

    Article  CAS  Google Scholar 

  • Finke, N. & B. B. Jørgensen, 2008. Response of fermentation and sulfate reduction to experimental temperature changes in temperate and Arctic marine sediments. ISME Journal 2: 815–829.

    Article  PubMed  CAS  Google Scholar 

  • Ghose, T. K., 1987. Measurement of cellulase activities. Pure and Applied Chemistry 59: 257–268.

    Article  CAS  Google Scholar 

  • Giovanela, M., E. Parlanti, E. J. Soriano-Sierra, M. S. Soldi & M. M. D. Sierra, 2004. Elemental compositions, FT-IR spectra and thermal behavior of sedimentary fulvic and humic acids from aquatic and terrestrial environments. Geochemical Journal 38: 255–264.

    Article  CAS  Google Scholar 

  • Gudasz, C., D. Bastviken, K. Steger, K. Premke, S. Sobek & L. J. Tranvik, 2010. Temperature-controlled organic carbon mineralization in lake sediments. Nature 466: 478–481.

    Article  PubMed  CAS  Google Scholar 

  • Gudasz, C., D. Bastviken, K. Premke, K. Steger & L. J. Tranvik, 2012. Constrained microbial processing of allochthonous organic carbon in boreal lake sediments. Limnology and Oceanography 57: 163–175.

    Article  CAS  Google Scholar 

  • Hong, S. W., H. S. Kim & T. H. Chung, 2010. Alteration of sediment organic matter in sediment microbial fuel cells. Environmental Pollution 158: 185–191.

    Article  PubMed  CAS  Google Scholar 

  • Hu, W. P., S. E. Jørgensen & F. B. Zhang, 2006. A vertical-compressed three-dimensional ecological model in Lake Taihu, China. Ecological Modelling 190: 367–398.

    Article  Google Scholar 

  • Hungate, R. E., 1950. The anaerobic mesophilic cellulolytic bacteria. Bacteriological reviews 14: 1–49.

    PubMed  CAS  Google Scholar 

  • Hupfer, M. & J. Lewandowski, 2008. Oxygen controls the phosphorus release from lake sediments—a long-lasting paradigm in limnology. International Review of Hydrobiology 93: 415–432.

    Article  CAS  Google Scholar 

  • Jin, X. C., S. R. Wang, Y. Pang & F. C. Wu, 2006. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China. Environmental Pollution 139: 288–295.

    Article  PubMed  CAS  Google Scholar 

  • Kourtev, P. S., J. G. Ehrenfeld & W. Z. Huang, 2002. Enzyme activities during litter decomposition of two exotic and two native plant species in hardwood forests of New Jersey. Soil Biology & Biochemistry 34: 1207–1218.

    Article  CAS  Google Scholar 

  • Kristensen, E., S. I. Ahmed & A. H. Devol, 1995. Aerobic and anaerobic decomposition of organic matter in marine sediment: which is fastest? Limnology and Oceanography 40: 1430–1437.

    Article  CAS  Google Scholar 

  • Laas, A., P. Noges, T. Koiv & T. Noges, 2012. High-frequency metabolism study in a large and shallow temperate lake reveals seasonal switching between net autotrophy and net heterotrophy. Hydrobiologia 694: 57–74.

    Article  CAS  Google Scholar 

  • Larmola, T., J. Alm, S. Juutinen, D. Koppisch, J. Augustin, P. J. Martikainen & J. Silvola, 2006. Spatial patterns of litter decomposition in the littoral zone of boreal lakes. Freshwater Biology 51: 2252–2264.

    Article  CAS  Google Scholar 

  • Liikanen, A., T. Murtoniemi, H. Tanskanen, T. Vaisanen & P. J. Martikainen, 2002. Effects of temperature and oxygen availability on greenhouse gas and nutrient dynamics in sediment of a eutrophic mid-boreal lake. Biogeochemistry 59: 269–286.

    Article  CAS  Google Scholar 

  • Liikanen, A., J. T. Huttunen, T. Murtoniemi, H. Tanskanen, T. Vaisanen, J. Silvola, J. Alm & P. J. Martikainen, 2003. Spatial and seasonal variation in greenhouse gas and nutrient dynamics and their interactions in the sediments of a boreal eutrophic lake. Biogeochemistry 65: 83–103.

    Article  CAS  Google Scholar 

  • Longhi, D., M. Bartoli & P. Viaroli, 2008. Decomposition of four macrophytes in wetland sediments: organic matter and nutrient decay and associated benthic processes. Aquatic Botany 89: 303–310.

    Article  CAS  Google Scholar 

  • Lovley, D. R. & E. J. P. Phillips, 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology 54: 1472–1480.

    PubMed  CAS  Google Scholar 

  • McKinley, V. L. & J. R. Vestal, 1992. Mineralization of glucose and lignocellulose by four arctic freshwater sediments in response to nutrient enrichment. Applied and Environmental Microbiology 58: 1554–1563.

    PubMed  CAS  Google Scholar 

  • Pace, M. L. & Y. T. Prairie, 2005. Respiration in lakes. In del Giorgio, P. A. & P. J. Le B. Williams (eds), Respiration in Aquatic Ecosystems. Oxford University Press, New York: 103–121.

    Chapter  Google Scholar 

  • Paerl, H. W., H. Xu, M. J. McCarthy, G. W. Zhu, B. Q. Qin, Y. P. Li & W. S. Gardner, 2011. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Research 45: 1973–1983.

    Article  PubMed  CAS  Google Scholar 

  • Prairie, Y. T., C. de Montigny & P. A. del Giorgio, 2001. Anaerobic phosphorus release from sediments: a paradigm revisited. Verhandlungen der Internationale Vereinigung für theoretische und angewandte Limnologie 27: 4013–4020.

    CAS  Google Scholar 

  • Prescott, C. E., 2010. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101: 133–149.

    Article  CAS  Google Scholar 

  • Qin, B. Q., P. Z. Xu, Q. L. Wu, L. C. Luo & Y. L. Zhang, 2007. Environmental issues of Lake Taihu, China. Hydrobiologia 581: 3–14.

    Article  CAS  Google Scholar 

  • Rovira, P. & V. R. Vallejo, 2002. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma 107: 109–141.

    Article  CAS  Google Scholar 

  • Schneider, T., K. M. Keiblinger, E. Schmid, K. Sterflinger-Gleixner, G. Ellersdorfer, B. Roschitzki, A. Richter, L. Eberl, S. Zechmeister-Boltenstern & K. Riedel, 2011. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME Journal 6: 1749–1762.

    Article  Google Scholar 

  • Shao, K., G. Gao, B. Qin, X. Tang, Y. Wang, K. Chi & J. Dai, 2011. Comparing sediment bacterial communities in the macrophyte-dominated and algae-dominated areas of eutrophic Lake Taihu, China. Canadian Journal of Microbiology 57: 263–272.

    Article  PubMed  CAS  Google Scholar 

  • Sinsabaugh, R. L., 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology & Biochemistry 42: 391–404.

    Article  CAS  Google Scholar 

  • Sizova, M. V., J. A. Izquierdo, N. S. Panikov & L. R. Lynd, 2011. Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost. Applied and Environmental Microbiology 77: 2282–2291.

    Article  PubMed  CAS  Google Scholar 

  • Sobek, S., E. Durisch-Kaiser, R. Zurbrügg, N. Wongfun, M. Wessels, N. Pasche & B. Wehrli, 2009. Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnology and Oceanography 54: 2243–2254.

    Article  Google Scholar 

  • Song, T. S., H. Y. Cai, Z. S. Yan, Z. W. Zhao & H. L. Jiang, 2012. Various voltage productions by microbial fuel cells with sedimentary inocula taken from different sites in one freshwater lake. Bioresource Technology 108: 68–75.

    Article  PubMed  CAS  Google Scholar 

  • Song, N., H. Y. Cai, Z. S. Yan & H. L. Jiang, 2013. Cellulose degradation by one mesophilic strain Caulobacter sp. FMC1 under both aerobic and anaerobic conditions. Bioresource Technology 131: 281–287.

    Article  PubMed  CAS  Google Scholar 

  • Stookey, L. L., 1970. Ferrozine: a new spectrophotometric regent for iron. Analytic Chemistry 42: 779–781.

    Article  CAS  Google Scholar 

  • Thomsen, U., B. Thamdrup, D. A. Stahl & D. E. Canfield, 2004. Pathways of organic carbon oxidation in a deep lacustrine sediment, Lake Michigan. Limnology and Oceanography 49: 2046–2057.

    Article  CAS  Google Scholar 

  • Tranvik, L. J., J. A. Downing, J. B. Cotner, S. A. Loiselle, R. G. Striegl, T. J. Ballatore, P. Dillon, K. Finlay, K. Fortino, et al., 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54: 2298–2314.

    Article  CAS  Google Scholar 

  • von Lützow, M. & I. Kögel-Knabner, 2009. Temperature sensitivity of soil organic matter decomposition—what do we know? Biology and Fertility of Soils 46: 1–15.

    Article  Google Scholar 

  • Walkley, A. & I. A. Black, 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37: 29–38.

    Article  CAS  Google Scholar 

  • Weston, N. B. & S. B. Joye, 2005. Temperature-driven decoupling of key phases of organic matter degradation in marine sediments. Proceedings of the National Academy of Sciences of the United States of America 102: 17036–17040.

    Article  PubMed  CAS  Google Scholar 

  • Wetterstedt, J. Ǻ. M., T. Persson & G. I. Ǻgren, 2010. Temperature sensitivity and substrate quality in soil organic matter decomposition: results of an incubation study with three substrates. Global Chang Biology 16: 1806–1819.

    Article  Google Scholar 

  • Wissel, H., C. Mayr & A. Lücke, 2008. A new approach for the isolation of cellulose from aquatic plant tissue and freshwater sediments for stable isotope analysis. Organic Geochemistry 39: 1545–1561.

    Article  CAS  Google Scholar 

  • Woomer, P., J. Bennett & R. Yost, 1990. Overcoming the inflexibility of most-probable-number procedures. Agronomy Journal 82: 349–353.

    Article  Google Scholar 

  • Wu, T. F., B. Q. Qin, G. W. Zhu, Y. Q. Ding, Y. P. Wang, L. C. Luo, W. Li & W. M. Zhang, 2012. Flume simulation of wave-induced release of internal dissolved nitrogen in Taihu Lake, China. Chinese Journal of Oceanology and Limnology 30: 796–805.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank anonymous reviewers and the associate editor Dr Mariana Meerhoff for their valuable comments, and Prof Lee R Krumholz in University of Oklahoma, USA, for help in language modification for the manuscript,. This work was supported by grants from Innovation Program of the Chinese Academy of Sciences (KZCX2-EW-314), and the National Natural Science Foundation of China (51079139 and 40971279).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-Long Jiang.

Additional information

Handling editor: Mariana Meerhoff

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, N., Yan, ZS., Cai, HY. et al. Effect of temperature on submerged macrophyte litter decomposition within sediments from a large shallow and subtropical freshwater lake. Hydrobiologia 714, 131–144 (2013). https://doi.org/10.1007/s10750-013-1529-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1529-2

Keywords

Navigation