Skip to main content
Log in

Molecular evolution of the membrane associated progesterone receptor in the Brachionus plicatilis (Rotifera, Monogononta) species complex

  • ROTIFERA XII
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Many studies have investigated physiological roles of the membrane associated progesterone receptor (MAPR), but little is known of its evolution. Marked variations in response to exogenous progesterone have been reported for four brachionid rotifer species, suggesting differences in progesterone signaling and reception. Here we report sequence variation for the MAPR gene in the Brachionus plicatilis species complex. Phylogenetic analysis of this receptor is compared with relatedness based on cytochrome c oxidase subunit 1 sequences. Nonsynonymous to synonymous site substitution rate ratios, amino acid divergence, and variations in predicted phosphorylation sites are examined to assess evolution of the MAPR among brachionid clades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abascal, F., R. Zardoya & D. Posada, 2005. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21: 2104–2105.

    Article  CAS  PubMed  Google Scholar 

  • Cahill, M. A., 2007. Progesterone receptor membrane component 1: an integrative review. Journal of Steroid Biochemistry and Molecular Biology 105: 16–36.

    Article  CAS  PubMed  Google Scholar 

  • Civetta, A. & R. S. Singh, 1998. Sex-related genes, directional sexual selection, and speciation. Molecular Biology and Evolution 15: 901–909.

    CAS  PubMed  Google Scholar 

  • de Castro, E., C. J. A. Sigrist, A. Gattiker, V. Bulliard, P. S. Langendijk-Genevaux, E. Gasteiger, A. Bairoch & N. Hulo, 2006. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Research 34: W362–W365.

    Article  PubMed  Google Scholar 

  • Ewing, B. & P. Green, 1998. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Research 8: 186–194.

    CAS  PubMed  Google Scholar 

  • Finn, R. D., J. Tate, J. Mistry, P. C. Coggill, J. S. Sammut, H. R. Hotz, G. Ceric, K. Forslund, S. R. Eddy, E. L. Sonnhammer & A. Bateman, 2008. The Pfam protein families database. Nucleic Acids Research 36: D281–D288.

    Article  CAS  PubMed  Google Scholar 

  • Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I form diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.

    CAS  PubMed  Google Scholar 

  • Fontaneto, D., I. Giordani, G. Melone & M. Serra, 2007. Disentangling the morphological stasis in two rotifer species of the Brachionus plicatilis species complex. Hydrobiologia 583: 297–307.

    Article  Google Scholar 

  • Frohman, M. A., M. K. Dush & G. R. Martin, 1988. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proceedings of the National Academy of Sciences of the United States of America 85: 8998–9002.

    Article  CAS  PubMed  Google Scholar 

  • Gelman, A. & D. B. Rubin, 1992. Inference from iterative simulation using multiple sequences. Statistical Science 7: 434–455.

    Google Scholar 

  • Gibrat, J.-F., T. Madej & S. H. Bryant, 1996. Surprising similarities in structure comparison. Current Opinion in Structural Biology 6: 377–385.

    Article  CAS  PubMed  Google Scholar 

  • Gómez, A., M. Serra, G. R. Carvalho & D. H. Lunt, 2002. Speciation in ancient cryptic species complexes: evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera). Evolution 56: 1431–1444.

    PubMed  Google Scholar 

  • Gordon, D., C. Abajian & P. Green, 1998. Consed: a graphical tool for sequence finishing. Genome Research 8: 195–202.

    CAS  PubMed  Google Scholar 

  • Haag-Liautard, C., N. Coffey, D. Houle, M. Lynch, B. Charlesworth & P. D. Keightley, 2008. Direct estimation of the mitochondrial DNA mutation rate in Drosophila melanogaster. PLoS Biology 6: e204.

    Article  PubMed  Google Scholar 

  • Hall, T. A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

    CAS  Google Scholar 

  • Huelsenbeck, J. P. & F. Ronquist, 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.

    Article  CAS  PubMed  Google Scholar 

  • Ketterson, E. D. & J. Val Nolan, 1999. Adaptation, exaptation, and constraint: a hormonal perspective. The American Naturalist 154: S4–S25.

    Article  Google Scholar 

  • Kishino, H. & M. Hasegawa, 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. Journal of Molecular Evolution 29: 170–179.

    Article  CAS  PubMed  Google Scholar 

  • Krogh, A., B. Larsson, G. v. Heijne & E. L. L. Sonnhammer, 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology 305: 567–580.

    Article  CAS  PubMed  Google Scholar 

  • Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson & D. G. Higgins, 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.

    Article  CAS  PubMed  Google Scholar 

  • Li, W.-H., C.-I. Wu & C.-C. Luo, 1984. Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications. Journal of Molecular Evolution 21: 58–71.

    Article  CAS  PubMed  Google Scholar 

  • Mansouri, M. R., J. Schuster, J. Badhai, E.-L. Stattin, R. Lösel, M. Wehling, B. Carlsson, O. Hovatta, P. O. Karlström, I. Golovleva, D. Toniolo, S. Bione, J. Peluso & N. Dahl, 2008. Alterations in the expression, structure and function of progesterone receptor membrane component-1 (PGRMC1) in premature ovarian failure. Human Molecular Genetics 17: 3776–3783.

    Article  CAS  PubMed  Google Scholar 

  • Mifsud, W. & A. Bateman, 2002. Membrane-bound progesterone receptors contain a cytochrome b5-like ligand-binding domain. Genome Biology 3: research0068.0061–research0068.0065.

    Google Scholar 

  • Notredame, C., D. G. Higgins & J. Heringa, 2000. T-Coffee: a novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology 302: 205–217.

    Article  CAS  PubMed  Google Scholar 

  • Palmé, A. E., M. Wright & O. Savolainen, 2008. Patterns of divergence among conifer ESTs and polymorphism in Pinus sylvestris identify putative selective sweeps. Molecular Biology and Evolution 25: 2567–2577.

    Article  PubMed  Google Scholar 

  • Rambaut, A., 2009. FigTree v1.2.2 [available at http://tree.bio.ed.ac.uk/software/figtree/].

  • Rohe, H. J., I. S. Ahmed, K. E. Twist & R. J. Craven, 2009. PGRMC1 (progesterone receptor membrane component 1): a targetable protein with multiple functions in steroid signaling, P450 activation and drug binding. Pharmacology and Therapeutics 121: 14–19.

    Article  CAS  PubMed  Google Scholar 

  • Schwede, T., J. Kopp, N. Geux & M. C. Peitsch, 2003. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research 31: 3381–3385.

    Article  CAS  PubMed  Google Scholar 

  • Snell, T. W. & N. J. D. DesRosiers, 2008. Effects of progesterone on sexual reproduction of Brachionus manjavacas (Rotifera). Journal of Experimental Marine Biology and Ecology 363: 104–109.

    Article  CAS  Google Scholar 

  • Snell, T. W. & C.-P. Stelzer, 2005. Removal of surface glycoproteins and transfer among Brachionus species. Hydrobiologia 546: 267–274.

    Article  CAS  Google Scholar 

  • Snell, T. W., J. Kubanek, W. Carter, A. B. Payne, J. Kim, M. K. Hicks & C.-P. Stelzer, 2006. A protein signal triggers sexual reproduction in Brachionus plicatilis (Rotifera). Marine Biology 149: 763–773.

    Article  CAS  Google Scholar 

  • Snell, T. W., T. L. Shearer, H. A. Smith, J. Kubanek, K. E. Gribble & D. B. Mark Welch, 2009. Genetic determinants of mate recognition in Brachionus manjavacas (Rotifera). BMC Biology 7: 60.

    Article  PubMed  Google Scholar 

  • Suatoni, E., S. Vicario, S. Rice, T. Snell & A. Caccone, 2006. An analysis of species boundaries and biogeographic patterns in a cryptic species complex: the rotifer—Brachionus plicatilis. Molecular Phylogenetics and Evolution 41: 86–98.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., L. Y. Geer, C. Chappey, J. A. Kans & S. H. Bryant, 2000. Cn3D: sequence and structure views for Entrez. Trends in Biochemical Sciences 25: 300–302.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z., 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24: 1586–1591.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z. & R. Nielsen, 2002. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Molecular Biology and Evolution 19: 908–917.

    CAS  PubMed  Google Scholar 

  • Zhang, J., R. Nielsen & Z. Yang, 2005. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Molecular Biology and Evolution 22: 2472–2479.

    Article  CAS  PubMed  Google Scholar 

  • Zwickl, D. J., 2006. Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biological Sequence Datasets Under the Maximum Likelihood Criterion. School of Biological Sciences, The University of Texas at Austin, Austin, TX: 115.

Download references

Acknowledgments

National Science Foundation grant BE/GenEn MCB-0412674E to TWS and DMW, and an NSF IGERT fellowship to HAS under DGE 0114400, supported this study. E. García-Roger provided subcultures of B. rotundiformis and B. plicatilis s.s. of Spain. B. Hecox-Lea did 5′-RACE. T. Shearer gave advice. Comments by R.L. Wallace, M. Serra, and two anonymous reviewers improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilary A. Smith.

Additional information

Guest editors: N. Walz, R. Adrian, J.J. Gilbert, M.T. Monaghan, G. Weithoff & H. Zimmermann-Timm / Rotifera XII: New aspects in rotifer evolution, genetics, reproduction, ecology and biogeography.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, H.A., Mark Welch, D.B. & Snell, T.W. Molecular evolution of the membrane associated progesterone receptor in the Brachionus plicatilis (Rotifera, Monogononta) species complex. Hydrobiologia 662, 99–106 (2011). https://doi.org/10.1007/s10750-010-0484-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0484-4

Keywords

Navigation