Skip to main content

Advertisement

Log in

The plankton community of Lake Matano: factors regulating plankton composition and relative abundance in an ancient, tropical lake of Indonesia

  • SPECIATION IN ANCIENT LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Recent evidence reveals that food webs within the Malili Lakes, Sulawesi, Indonesia, support community assemblages that are made up primarily of endemic species. It has been suggested that many of the species radiations, as well as the paucity of cosmopolitan species in the lakes, are related to resource limitation. In order to substantiate the possibility that resource limitation is playing such an important role, a study of the phytoplankton and zooplankton communities of Lake Matano was implemented between 2000 and 2004. We determined species diversity, relative abundances, size ranges, and total biomass for the phytoplankton and zooplankton, including the distribution of ovigerous individuals throughout the epilimnion of Lake Matano in three field seasons. The phytoplankton community exhibited very low biomass (<15 μg l−1) and species richness was depressed. The zooplankton assemblage was also limited in biomass (2.5 mg l−1) and consisted only of three taxa including the endemic calanoid Eodiaptomus wolterecki var. matanensis, the endemic cyclopoid, Tropocyclops matanensis and the rotifer Horaella brehmi. Zooplankton were very small (<600 μm body length), and spatial habitat partitioning was observed, with Tropocylops being confined to below 80 m, while rotifer and calanoid species were consistently observed above 80 m. Less than 0.1% of the calanoid copepods in each year were egg-bearing, suggesting very low population turnover rates. It was concluded that chemical factors as opposed to physical or biological processes were regulating the observed very low standing crops of phytoplankton which in turn supports a very minimal zooplankton community restricted in both species composition and abundance. As chemical factors are a function of the catchment basin of Lake Matano, it is predicted that resource limitation has long played an important role in shaping the unique endemic assemblages currently observed in the food web of the lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bramburger, A. J., 2004. Floristics and taxonomy of the endemic diatom flora of the ancient Malili Lakes, Sulawesi Island, Indonesia. Thesis, Faculty of Graduate Studies and Research, University of Windsor, Windsor.

  • Bramburger, A. J., P. B. Hamilton, P. E. Hehanussa & G. D. Haffner, 2008. Spatial patterns of planktonic and benthic diatom distribution and assemblage in Lake Matano (Sulawesi Island, Indonesia). Proceedings of the 19th International Diatom Symposium (in press).

  • Brehm, H., 1933. Mitteilungen von der Wallacea-Expedition Woltereck. Mitteilung IV. Einige neue Diaptomiden. Zoologischer Anzeiger 103: 295–304.

    Google Scholar 

  • Brooks, J. L., 1950. Speciation in ancient lakes (concluded). The Quarterly Review of Biology 25: 131–176.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.

    Article  PubMed  Google Scholar 

  • Bucka, H. & R. Zurek, 1992. Trophic relations between phyto- and zooplankton in a field experiment in the aspect of the formation and decline of water blooms. Acta Hydrobiologica 34: 139–155.

    Google Scholar 

  • Carlotti, F. & H. J. Hirche, 1997. Growth and egg production of female Calanus finmarchicus: An individual-based physiological model and experimental validation. Marine Ecology Progress Series 149: 91–104.

    Article  Google Scholar 

  • Crowe, S. A., A. H. O’Neill, S. Katsev, P. Hehanussa, G. D. Haffner, B. Sundby, A. Mucci & D. Fowle, 2008. The biogeochemistry of tropical lakes: A case study from Lake Matano, Indonesia. Limnology and Oceanography 53: 319–331.

    CAS  Google Scholar 

  • Defaye, D., 2007. A new Tropocyclops (Copepoda, Cyclopidae) from Lake Matano, Indonesia. Zootaxa 54: 17–29.

    Google Scholar 

  • Dumont, H. J. & H. Segers, 1996. Estimating lacustrine zooplankton species richness and complementarity. Hydrobiologia 341: 125–132.

    Article  Google Scholar 

  • Dumont, H. J., I. van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton, and benthos of continental waters. Oecologica 19: 75–97.

    Article  Google Scholar 

  • Fernando, C. H., 1987. Tropical freshwater zooplankton with special reference to South East Asia (Oriental Region). Reports of the National Geographic Society 87: 287–311.

    Google Scholar 

  • Fernando, C. H., 2002. A Guide to Tropical Freshwater Zooplankton. Identification, Ecology and Impact on Fisheries. Backhuys Publishers, Leiden, Netherlands: 291 pp.

    Google Scholar 

  • Haffner, G. D., P. E. Hehanussa & D. Hartoto, 2001. The biology and physical processes of large lakes of Indonesia. In Munawar, M. & R. E. Hecky (eds), The Great Lakes of the World: Food-web, Health, and Integrity. Backhuys Publishers, Leiden, Netherlands: 183–194.

    Google Scholar 

  • Hall, D. J., S. T. Threlkeld, C. W. Burns & P. H. Crowley, 1976. Size-efficiency hypothesis and size structure of zooplankton communities. Annual Review of Ecology and Systematics 7: 177–208.

    Article  Google Scholar 

  • Hobaek, A., M. Manca & T. Andersen, 2002. Factors influencing species richness in lacustrine zooplankton. Acta Oecologica 23: 155–163.

    Article  Google Scholar 

  • Holtan, H., L. Kamp-Nielsen & A. O. Stuanes, 1988. Phosphorus in soil, water and sediment: An overview. Hydrobiologia 170: 19–34.

    CAS  Google Scholar 

  • Hustedt, F., 1942. Süßwasser-Diatomeen des indomalayischen Archipels und der Hawaii-Inseln. Internationale Revue der Gesamten Hydrobiologie und Hydrographie 42: 1–252.

    Article  Google Scholar 

  • Hutchinson, G. E., 1967. A Treatise on Limnology, Vol. II. Introduction to Lake Biology and the Limnoplankton. John Wiley & Sons, New York.

  • Kottelat, M., 1990a. Synopsis of the endangered Buntingi (Osteichthyes: Adrianichthydae and Oryziidae) of Lake Poso, Central Sulawesi, Indonesia, with a new reproductive guild and descriptions of three new species. Ichthyological Exploration of Freshwaters 1: 49–67.

    Google Scholar 

  • Kottelat, M., 1990b. The ricefishes (Oryziidae) of the Malili Lakes, Sulawesi, Indonesia, with description of a new species. Ichthyological Exploration of Freshwaters 1: 321–344.

    Google Scholar 

  • Kottelat, M., 1991. Sailfin silversides (Pisces: Telmatherinidae) of Lake Matano, Sulawesi, Indonesia, with descriptions of 6 new species. Ichthyological Exploration of Freshwaters 1: 321–344.

    Google Scholar 

  • Kugrens, P. & B. L. Clay, 2003. Cryptomonads. In Wehr, J. D. & R. G. Sheath (eds), Freshwater Algae of North America Ecology and Classification. Academic Press, Amsterdam: 715–755.

    Chapter  Google Scholar 

  • Lehmusluoto, P., B. Machbub, N. Teranna, F. Achmad, L. Boer, S. Brahmana, B. Steiadji, B. Pridadie, K. H. Timotius & F. Goeltenboth, 1999. Limnology in Indonesia. From the legacy of the past to the prospects for the future. In Wetzel, R. G. & B. Gopal (eds), Limnology in Developing Countries, Vol. 2. International Scientific Publications, New Delhi, India: 119–234.

    Google Scholar 

  • Lewis, W., 1996. Tropical lakes: How latitude makes a difference. In Schiemer, F. & K. T. Boland (eds), Perspectives in Tropical Limnology. SPB Academic Publishers, Amsterdam, Netherlands: 43–64.

    Google Scholar 

  • Lodge, D. M., 1993. Species invasions and deletions: Community effects and responses to climate and habitat change. In Kareiva, P. M., J. G. Kingsolver & R. B. Huey (eds), Biotic Interactions and Global Change. Sinauer Associates, Sunderland, MA: 367–387.

    Google Scholar 

  • Martens, K. & I. Schön, 1999. Crustacean biodiversity in ancient lakes: A review. Crustaceana 72: 899–910 (Part 8).

    Article  Google Scholar 

  • Nicholls, K. H. & D. E. Wujek, 2003. Crysophycean algae. In Wehr, J. D. & R. G. Sheath (eds), Freshwater Algae of North America Ecology and Classification. Academic Press, Amsterdam: 471–509.

    Chapter  Google Scholar 

  • Ogutu-Ohwayo, R. & R. E. Hecky, 1991. Fish introductions to Africa and some of their implications. Canadian Journal of Fisheries and Aquatic Sciences 48: 8–12.

    Google Scholar 

  • Pinto-Coelho, R., B. Pinel-Alloul, G. Méthot & K. E. Havens, 2005. Crustacean zooplankton in lakes and reservoirs of temperate and tropical regions: variation with tropical status. Canadian Journal of Fisheries and Aquatic Sciences 62: 348–361.

    Article  CAS  Google Scholar 

  • Poulet, S. A., A. Ianora, M. Laabir & W. C. M. Klein-Breteler, 1995. Towards the measurement of secondary production and recruitment in copepods. Journal of Marine Sciences 52: 359–368.

    Article  Google Scholar 

  • Ranga Reddy, Y., 1994. Copepoda: Calanoid: Diaptomidae. Guide to the Identification of the Microinvertebrates of the Continental Waters of the World, Vol. 5. Academic Publishing, The Hague, Netherlands: 221.

    Google Scholar 

  • Reynolds, C. S., S. N. Reynolds, I. F. Munawar & M. Munawar, 2000. The regulation of phytoplankton population dynamics in the world’s largest lakes. Aquatic Ecosystem Health Management 3: 1–21.

    Article  Google Scholar 

  • Roy, D., M. F. Docker, G. D. Haffner & D. D. Heath, 2007. Body shape vs. colour associated initial divergence in the Telmatherina radiation in Lake Matano, Sulawesi, Indonesia. Journal of Evolutionary Biology 20: 1126–1137.

    Article  PubMed  CAS  Google Scholar 

  • Roy, D., M. F. Docker, P. Hehanussa, D. D. Heath & G. D. Haffner, 2004. Genetic and morphological data supporting the hypothesis of adaptive radiation in the endemic fish of Lake Matano. Journal of Evolutionary Biology 17: 1268–1276.

    Article  PubMed  CAS  Google Scholar 

  • Roy, D., D. W. Kelly, C. H. J. M. Fransen, D. D. Heath & G. D. Haffner, 2006b. Evidence of small scale vicariance in Caridinia lanceolata (Decapoda: Atyidae) from the Malili Lakes, Sulawesi. Evolutionary Ecology Research 8: 1087–1099.

    Google Scholar 

  • Roy, D., G. Paterson, P. B. Hamilton, D. D. Heath & G. D. Haffner, 2007. Resource-based adaptative divergence in the freshwater fish Telmatherina from Lake Matano, Indonesia. Molecular Ecology 16: 35–48.

    Article  PubMed  Google Scholar 

  • Ruttner-Kolisko, A., 1974. Plankton Rotifers: Biology and Taxonomy. Die Binnengewässer Vol. 26/1 (Suppl.): 1–146.

    Google Scholar 

  • Sanderson, B. L. & T. M. Frost, 1996. Regulation of dinoflagellate populations: Relative importance of grazing, resource limitation, and recruitment from sediments. Canadian Journal of Fisheries and Aquatic Sciences 53: 1409–1417.

    Article  Google Scholar 

  • Sarasin, P. & F. Sarasin, 1897. Reisebericht aus Celebes. IV. Reise durch central-Celebes vom Golf von Boni nach den Golf von Tomieni. Gesellschaft für Erdkunde zu Berlin 30: 312–352.

    Google Scholar 

  • Standard Methods, 1995. For the examination of water and wastewater. American Public Health Association: 1268.

  • Sun, J. & D. Liu, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25: 1331–1346.

    Article  Google Scholar 

  • Talling, J. F., 1957. Some observations on the stratification of Lake Victoria. Limnology and Oceanography 2: 231–221.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen phytoplankton Methodik. Mitteilungen der Internationale Vereinigung für Limnologie, Mitteilungen 9: 1–38.

    Google Scholar 

  • Von Rintelen, T. & M. Glaubrecht, 2003. New discoveries in old lakes: Three new species of Tylomelania Sarasin & Sarasin, 1879 (Gastropoda: Cerithoidea: Pachychilidae) from the Malili Lake system on Sulawesi, Indonesia. Journal of Molluscan Studies 69: 3–17.

    Article  Google Scholar 

  • Von Rintelen, T., A. B. Wilson, A. Meyer & M. Glaubrecht, 2004. Escalation and trophic specialization drive adaptive radiation of freshwater gastropods in ancient lakes on Sulawesi, Indonesia. Proceedings of the Royal Society of London, Series B, Biological Sciences 271: 2541–2549.

    Article  Google Scholar 

  • Wehr, J. D. & R. G. Sheath, 2003. Freshwater Algae of North America, Ecology and Classification. Academic Press, Amsterdam: 918 pp.

    Google Scholar 

  • Whitten, T., M. Mustafa & G. S. Henderson, 1987. The Ecology of Sulawesi. Gadjah Mada University Press, Singapore.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Douglas Haffner.

Additional information

Guest editors: T. Wilke, R. Väinölä & F. Riedel

Patterns and Processes of Speciation in Ancient Lakes: Proceedings of the Fourth Symposium on Speciation in Ancient Lakes, Berlin, Germany, September 4–8, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabo, E., Roy, D., Hamilton, P.B. et al. The plankton community of Lake Matano: factors regulating plankton composition and relative abundance in an ancient, tropical lake of Indonesia. Hydrobiologia 615, 225–235 (2008). https://doi.org/10.1007/s10750-008-9560-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9560-4

Keywords

Navigation