Skip to main content
Log in

Palatability of Leaves Conditioned in Streams Affected by Mine Drainage: A Feeding Experiment with Gammarus Pulex (L.)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Both the absence of leaf shredding macroinvertebrates and low microbial activity are of major importance in determining slow and incomplete leaf decay in extremely acidic (pH<3.5) mining streams. These streams are affected by a heavy ochre deposition causing the formation of massive iron plaques on leaf surfaces that hinder microbial exploitation. An investigation was carried out to determine whether iron plaques and leaf conditioning status (acid conditioned with and without iron plaques, neutral conditioned, unconditioned) affect the feeding preference of the shredder Gammarus pulex (L.). Leaf respiration rates and fungal biomass (ergosterol contents) were measured to determine microbial colonization. Neutral conditioned leaves had significantly higher microbial colonization than acid conditioned leaves with iron plaques. Notwithstanding, leaves of both conditioning types were consumed at high rates by G. pulex. The microbial colonization had no influence on feeding preference in the experiment. It is presumed that iron adsorbed organic material caused the high palatability of leaves with iron plaques. The results indicate that the large deposits of leaves coated with iron plaques will be available to the stream food web when water quality will be restored to neutral as planed in scenarios for the future development of mining streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bärlocher F. (1985). The role of fungi in the nutrition of stream invertebrates. Botanical Journal of the Linnean Society 91: 83–86

    Google Scholar 

  • Benfield E. F. (1996). Leaf breakdown in stream ecosystems. In: Hauer, F. R. and Lamberti, G. A. (eds) Methods in Stream Ecology, pp 579–589. Academic Press, Inc, San Diego

    Google Scholar 

  • Burton T. M. (1985). Acidification effects on stream biota and organic matter processing. Canadian Journal of Fisheries and Aquatic Sciences 42: 669–675

    Article  Google Scholar 

  • Canhoto C. and Graça M. A. S. (1999). Leaf barriers to fungal colonization and shredders (Tipula lateralis) consumption of decomposing Eucalyptus globules. Microbial Ecology 37: 163–172

    Article  PubMed  Google Scholar 

  • Cruz-Rivera E. and Hay M. E. (1998). Can quantity replace quality? Food choice, compensatory feeding and fitness of marine mesograzers. Ecology 81: 201–219

    Article  Google Scholar 

  • Cummins K. W. (1974). Structure and function of stream ecosystems. BioScience 24: 631–641

    Article  Google Scholar 

  • Dangles O., Gessner M. O., Guérold F. and Chauvet E. (2004). Impacts of stream acidification on litter breakdown: implications for assessing ecosystem functioning. Journal of Applied Ecology 41: 365–375

    Article  CAS  Google Scholar 

  • Dangles O. and Guérold F. (2001). Linking shredders and leaf litter processing: Insights from an acidic stream study. International Review of Hydrobiology 86: 395–406

    Article  Google Scholar 

  • DIN 38406-1, 1983. Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung (DEV), Kationen (Gruppe E), Bestimmung von Eisen, photometrisches Verfahren (E1). 1983-05.

  • Ferris F. G., Tazaki K. and Fyfe W. S. (1989). Iron oxides in acid mine drainage environments and their association with bacteria. Chemistry and Geology 74: 321–330

    Article  CAS  Google Scholar 

  • Friberg N. and Jacobsen D. (1994). Feeding plasticity of two detrivore-shredders. Freshwater Biology 32: 133–142

    Google Scholar 

  • Fyson A., Nixdorf B., Kalin M. and Steinberg C. E. W. (1998). Mesocosm studies to assess acidity removal from acidic mine lakes through controlled eutrophication. Ecological Engineering 10: 229–245

    Article  Google Scholar 

  • Gessner M. O. and Schmitt A. L. (1996). Use of solid-phase extraction to determine ergosterol concentrations in plant tissues colonized by fungi. Applied and Environmental Microbiology 62: 415–419

    CAS  PubMed  Google Scholar 

  • Graça M. A. S. (1993). Patterns and processes in detritus-based stream systems. Limnologica 23: 107–114

    Google Scholar 

  • Graça M. A. S., Cressa C., Gessner M. O., Feio M. J., Callies K. A. and Barrios C. (2001). Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshwater Biology 46: 947–957

    Article  Google Scholar 

  • Graça M. A. S., Maltby L. and Calow P. (1993). Importance of fungi in the diet of Gammarus pulex and Asellus aquaticus: II. Effects on growth, reproduction and physiology. Oecologia 96: 304–309

    Article  Google Scholar 

  • Klapper H., Friese K., Scharf B., Schimmele M. and Schultze M. (1998). Ways of controlling acid by ecotechnology. In: Geller, W., Klapper, H., and Salomons, W. (eds) Acidic Mining Lakes, pp 401–418. Springer, Berlin

    Google Scholar 

  • (1998). A Guide to Kjeldahl Nitrogen Determination Methods and Apparatus. Industry Service Publication, Kansas City

    Google Scholar 

  • Motomoro K., Mitsuhashi H. and Nakano S. (2001). Influence of leaf litter quality on the colonization and consumption of stream invertebrate shredders. Ecological Research 16: 173–183

    Article  Google Scholar 

  • Mutz M. (1998). Stream system restoration in a strip mining region, eastern Germany: dimension, problems and first steps. Aquatic Conservation: Marine and Freshwater Ecosystems 8: 159–166

    Article  Google Scholar 

  • Mutz M. and Schlief J. (2005). Scenario for undirected progression of extremely acidic streams in the Lusatian post-mining landscape. Ecological Engineering 24: 59–65

    Article  Google Scholar 

  • Niyogi D. K., Lewis W. M. and McKnight D. M. (2001). Litter breakdown in mountain streams affected by mine drainage: biotic mediation of abiotic controls. Ecological Applications 11: 506–516

    Article  Google Scholar 

  • Niyogi D. K. and McKnight D. M. (2002). Effects of mine drainage on breakdown of aspen litter in mountain streams. Water, Air and Soil Pollution: Focus 2: 329–341

    Article  CAS  Google Scholar 

  • Pennings S. C., Carefoot T. H., Siska E. L., Chase M. E. and Page T. A. (1998). Feeding preferences of a generalist salt-marsh crab: relative importance of multiple plant traits. Ecology 79: 1968–1979

    Article  Google Scholar 

  • Pusch M. and Schwoerbel J. (1994). Community respiration in hyporheic sediments of a mountain stream (Steina, Black Forest). Archiv fuer Hydrobiology 130: 35–52

    Google Scholar 

  • Quinn J. M., Burrell G. P. and Parkyn S. M. (2000). Influences of leaf toughness and nitrogen content on in-stream processing and nutrient uptake by litter in a Waikato, New Zealand, pasture stream and streamside channels. New Zealand Journal of Marine and Freshwater Research 34: 255–274

    Google Scholar 

  • Rounick J. S. and Winterbourn M. J. (1983). Leaf processing in two contrasting beech forest streams: effects of physical and biotic factors on litter breakdown. Archiv fuer Hydrobiology 96: 448–474

    Google Scholar 

  • Schlief J. (2004). Leaf associated microbial activities in a stream affected by acid mine drainage. International Review of Hydrobiology 89: 467–475

    Article  Google Scholar 

  • Schlief J. and Mutz M. (2005). Long-term leaf litter decomposition and associated microbial processes in extremely acidic (pH<3) mining waters. Archiv fuer Hydrobiologie 164: 53–68

    Article  CAS  Google Scholar 

  • Siefert J. and Mutz M. (2001). Processing of leaf litter in acid waters of the post-mining landscape, Lusatia, Germany. Ecological Engineering 17: 297–306

    Article  Google Scholar 

  • Suberkropp K. (1992). Interactions with invertebrates. In: Bärlocher, F. (eds) The Ecology of Aquatic Hyphomycetes, pp 118–134. Springer, New York

    Google Scholar 

  • Tipping E. (1981). The adsorption of aquatic humic substances by iron oxides. Geochimica et Cosmochimica Acta 45: 191–199

    Article  CAS  Google Scholar 

  • Totsche O. and Steinberg Ch. (2004). Maßnahmen zur Neutralisierung saurer Gewässer- eine Übersicht. In: Nixdorf, B. and Deneke, R. (eds) Grundlagen und Maßnahmen zur biogenen Alkalinisierung von sauren Tagebauseen, pp 37–54. Weißensee, Berlin

    Google Scholar 

  • Waldbauer G. P. (1968). The consumption and utilization of food by insects. Advances in Insect Physiology 5: 229–288

    Article  Google Scholar 

  • Webster J. R. and Benfield E. F. (1986). Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics 17: 567–594

    Article  Google Scholar 

  • Yeates L. V. and Barmuta L. A. (1999). The effects of willow and eucalypt leaves on feeding preference and growth of some Australian aquatic macroinvertebrates. Australian Journal of Ecology 24: 593–599

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanette Schlief.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlief, J., Mutz, M. Palatability of Leaves Conditioned in Streams Affected by Mine Drainage: A Feeding Experiment with Gammarus Pulex (L.). Hydrobiologia 563, 445–452 (2006). https://doi.org/10.1007/s10750-006-0028-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0028-0

Key words

Navigation