Skip to main content
Log in

Heart failure with mildly reduced ejection fraction: from diagnosis to treatment. Gaps and dilemmas in current clinical practice

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure (HF) with mildly reduced ejection fraction (HFmrEF) was recently recognised as a distinct clinical entity. Although guideline diagnostic criteria for HFmrEF are well defined, there is substantial variation in clinical characteristics, pathophysiology and prognosis of this group of patients. The heterogeneity in clinical presentations of HFmrEF arises from diverse patients’ risk factors, coexisting comorbidities, which modify clinical signs and symptoms, and stage of the disease. On the other hand, HFmrEF shares common clinical features with other HF subgroups. However, the knowledge about the mechanisms and therapeutic approaches in HFmrEF is far from being completely understood. Therefore, HFmrEF represents one of the most intriguing areas of heart failure research. The aim of this review is therefore to highlight the diagnostic challenges in HFmrEF and to provide a constructive appraisal on the pathophysiology of HFmrEF, as well as to discuss the role of pharmacological and nonpharmacological treatment options in patients with HFmrEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Savarese G, Lund LH (2017) Global public health burden of heart failure. Card Fail Rev 03:7–11

    Article  Google Scholar 

  2. Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37:2129–2200

    Article  PubMed  Google Scholar 

  3. Lund LH, Claggett B, Liu J et al (2018) Heart failure with mid-range ejection fraction in CHARM: characteristics, outcomes and effect of candesartan across the entire ejection fraction spectrum. Eur J Heart Fail 20:1230–1239

    Article  CAS  PubMed  Google Scholar 

  4. Chioncel O, Lainscak M, Seferovic PM et al (2017) Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: an analysis of the ESC Heart Failure Long-Term Registry. Eur J Heart Fail 19:1574–1585

    Article  CAS  PubMed  Google Scholar 

  5. Koh AS, Tay WT, Teng THK et al (2017) A comprehensive population-based characterization of heart failure with mid-range ejection fraction. Eur J Heart Fail 19:1624–1634

    Article  PubMed  Google Scholar 

  6. Uijl A, Lund LH, Vaartjes I et al (2020) A registry-based algorithm to predict ejection fraction in patients with heart failure. ESC Hear Fail 7:2388–2397

    Article  Google Scholar 

  7. Tsuji K, Sakata Y, Nochioka K et al (2017) Characterization of heart failure patients with mid-range left ventricular ejection fraction-a report from the CHART-2 Study. Eur J Heart Fail 19:1258–1269

    Article  PubMed  Google Scholar 

  8. Rickenbacher P, Kaufmann BA, Maeder MT et al (2017) Heart failure with mid-range ejection fraction: a distinct clinical entity? Insights from the Trial of Intensified versus standard Medical therapy in Elderly patients with Congestive Heart Failure (TIME-CHF). Eur J Heart Fail 19:1586–1596

    Article  CAS  PubMed  Google Scholar 

  9. Cheng RK, Cox M, Neely ML et al (2014) Outcomes in patients with heart failure with preserved, borderline, and reduced ejection fraction in the Medicare population. Am Heart J 168:721–730

    Article  PubMed  Google Scholar 

  10. Ibrahim NE, Song Y, Cannon CP et al (2019) Heart failure with mid-range ejection fraction: characterization of patients from the PINNACLE Registry®. ESC Hear Fail 6:784–792

    Article  Google Scholar 

  11. Fonarow GC, Stough WG, Abraham WT et al (2007) Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure. J Am Coll Cardiol 50:768–777

    Article  PubMed  Google Scholar 

  12. Solomon SD, Claggett B, Lewis EF et al (2016) Influence of ejection fraction on outcomes and efficacy of spironolactone in patients with heart failure with preserved ejection fraction. Eur Heart J 37:455–462

    Article  CAS  PubMed  Google Scholar 

  13. Cleland JGF, Bunting KV, Flather MD et al (2018) Beta-blockers for heart failure with reduced, mid-range, and preserved ejection fraction: an individual patient-level analysis of double-blind randomized trials. Eur Heart J 39:26–35

    Article  CAS  PubMed  Google Scholar 

  14. Lam CSP, Voors AA, Piotr P, McMurray JJV, Solomon SD (2020) Time to rename the middle child of heart failure: heart failure with mildly reduced ejection fraction. Eur Heart J 41:2353–2355

    Article  PubMed  Google Scholar 

  15. Bozkurt B, Coats AJ, Tsutsui H et al (2021) universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J Card Fail 27:387–413

    Article  Google Scholar 

  16. McDonagh TA, Metra M, Adamo M et al (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42:3599–3726

    Article  CAS  PubMed  Google Scholar 

  17. Branca L, Sbolli M, Metra M, Fudim M (2020) Heart failure with mid-range ejection fraction: pro and cons of the new classification of Heart Failure by European Society of Cardiology guidelines. ESC Hear Fail 7:381–399. https://doi.org/10.1002/ehf2.12586

  18. Yancy CW, Jessup M, Bozkurt B et al (2013) 2013 ACCF/AHA guideline for the management of heart failure. Circulation 128:e240-327

    PubMed  Google Scholar 

  19. Cui X, Thunström E, Dahlström U, Zhou J, Ge J, Fu M (2020) Trends in cause‐specific readmissions in heart failure with preserved vs. reduced and mid‐range ejection fraction. ESC Hear Fail 7:2894–903

  20. Voigt JU, Cvijic M (2019) 2- and 3-dimensional myocardial strain in cardiac health and disease. JACC Cardiovasc Imaging 12:1849–1863

    Article  PubMed  Google Scholar 

  21. Baron T, Berglund L, Hedin E-M, Flachskampf FA (2019) Test–retest reliability of new and conventional echocardiographic parameters of left ventricular systolic function. Clin Res Cardiol 108:355–365

    Article  PubMed  Google Scholar 

  22. Otterstad JE, Froeland G, St. John Sutton M, Holme I (1997) Accuracy and reproducibility of biplane two-dimensional echocardiographic measurements of left ventricular dimensions and function. Eur Heart J 18:507–13

  23. Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popović ZB, Marwick TH (2013) Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes. J Am Coll Cardiol 61:77–84

    Article  PubMed  Google Scholar 

  24. Webb J, Draper J, S. Carr-White G (2018) What proportion of patients with heart failure and left ventricular ejection fraction 40% to 49% fulfill the criteria for heart failure with mid-range ejection fraction? Am J Cardiol 122:2166–7

  25. Rastogi A, Novak E, Platts AE, Mann DL (2017) Epidemiology, pathophysiology and clinical outcomes for heart failure patients with a mid-range ejection fraction. Eur J Heart Fail 19:1597–1605

    Article  CAS  PubMed  Google Scholar 

  26. Savarese G, Vedin O, D’Amario D et al (2019) Prevalence and prognostic implications of longitudinal ejection fraction change in heart failure. JACC Hear Fail 7:306–317

    Article  Google Scholar 

  27. Lupón J, Gavidia-Bovadilla G, Ferrer E et al (2018) Dynamic trajectories of left ventricular ejection fraction in heart failure. J Am Coll Cardiol 72:591–601

    Article  PubMed  Google Scholar 

  28. Halliday BP, Wassall R, Lota AS et al (2019) Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomised trial. Lancet 393:61–73

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wilcox JE, Fang JC, Margulies KB, Mann DL (2020) Heart failure with recovered left ventricular ejection fraction: JACC scientific expert panel. J Am Coll Cardiol 76:719–734

    Article  PubMed  Google Scholar 

  30. Park JJ, Mebazaa A, Hwang I, Park J, Park J, Cho G (2020) Phenotyping heart failure according to the longitudinal ejection fraction change: myocardial strain, predictors, and outcomes. J Am Heart Assoc 9:e015009

    Article  PubMed  PubMed Central  Google Scholar 

  31. Triposkiadis F, Butler J, Abboud FM et al (2019) The continuous heart failure spectrum: moving beyond an ejection fraction classification. Eur Heart J 40:2155–2163

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tromp J, Westenbrink BD, Ouwerkerk W et al (2018) Identifying pathophysiological mechanisms in heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol 72:1081–1090

    Article  CAS  PubMed  Google Scholar 

  33. Tromp J, Khan MAF, Mentz RJ et al (2017) Biomarker profiles of acute heart failure patients with a mid-range ejection fraction. JACC Hear Fail 5:507–517

    Article  Google Scholar 

  34. Gohar A, Chong JPC, Liew OW et al (2017) The prognostic value of highly sensitive cardiac troponin assays for adverse events in men and women with stable heart failure and a preserved vs. reduced ejection fraction. Eur J Heart Fail 19:1638–47

  35. Vergaro G, Aimo A, Prontera C et al (2019) Sympathetic and renin-angiotensin-aldosterone system activation in heart failure with preserved, mid-range and reduced ejection fraction. Int J Cardiol 296:91–97

    Article  PubMed  Google Scholar 

  36. Jimenez-Marrero S, Moliner P, Rodríguez-Costoya I et al (2020) Sympathetic activation and outcomes in chronic heart failure: does the neurohormonal hypothesis apply to mid-range and preserved ejection fraction patients? Eur J Intern Med 81:60–66

    Article  CAS  PubMed  Google Scholar 

  37. Doeblin P, Hashemi D, Tanacli R et al (2019) CMR tissue characterization in patients with HFmrEF. J Clin Med 8:1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Adamo L, Yu J, Rocha-Resende C, Javaheri A, Head RD, Mann DL (2020) Proteomic signatures of heart failure in relation to left ventricular ejection fraction. J Am Coll Cardiol 76:1982–1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gevaert AB, Tibebu S, Mamas MA et al (2021) Clinical phenogroups are more effective than left ventricular ejection fraction categories in stratifying heart failure outcomes. ESC Hear Fail 8:2741–2754

    Article  Google Scholar 

  40. Khan MS, Samman Tahhan A, Vaduganathan M et al (2020) Trends in prevalence of comorbidities in heart failure clinical trials. Eur J Heart Fail 22:1032–1042

    Article  PubMed  Google Scholar 

  41. Vedin O, Lam CSP, Koh AS et al (2017) Significance of ischemic heart disease in patients with heart failure and preserved, midrange, and reduced ejection fraction. Circ Hear Fail 10:e003875

    Article  Google Scholar 

  42. Savarese G, Settergren C, Schrage B et al (2020) Comorbidities and cause-specific outcomes in heart failure across the ejection fraction spectrum: a blueprint for clinical trial design. Int J Cardiol 313:76–82

    Article  PubMed  Google Scholar 

  43. Streng KW, Nauta JF, Hillege HL et al (2018) Non-cardiac comorbidities in heart failure with reduced, mid-range and preserved ejection fraction. Int J Cardiol 271:132–139

    Article  PubMed  Google Scholar 

  44. Shah KS, Xu H, Matsouaka RA et al (2017) Heart failure with preserved, borderline, and reduced ejection fraction. J Am Coll Cardiol 70:2476–2486

    Article  PubMed  Google Scholar 

  45. Vergaro G, Ghionzoli N, Innocenti L et al (2019) Noncardiac versus cardiac mortality in heart failure with preserved, midrange, and reduced ejection fraction. J Am Heart Assoc 8:e013441

    Article  PubMed  PubMed Central  Google Scholar 

  46. Heidenreich PA, Bozkurt B, Aguilar D et al (2022) 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 145:e895–e1032

    PubMed  Google Scholar 

  47. Lam CSP, Solomon SD (2014) The middle child in heart failure: heart failure with mid-range ejection fraction (40–50%). Eur J Heart Fail 16:1049–1055

    Article  PubMed  Google Scholar 

  48. Bouabdallaoui N, Rouleau J (2020) Evolving towards a more realistic approach to the importance of left ventricular ejection fraction and sex in heart failure and its therapy. Eur J Heart Fail 22:800–803

    Article  PubMed  Google Scholar 

  49. Dewan P, Jackson A, Lam CSP et al (2020) Interactions between left ventricular ejection fraction, sex and effect of neurohumoral modulators in heart failure. Eur J Heart Fail 22:898–901

    Article  PubMed  Google Scholar 

  50. Halliday BP, Owen R, Gregson J et al (2021) Myocardial remodelling after withdrawing therapy for heart failure in patients with recovered dilated cardiomyopathy: insights from TRED-HF. Eur J Heart Fail 23:293–301

    Article  CAS  PubMed  Google Scholar 

  51. Cleland JGF, Tendera M, Adamus J et al (2006) The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J 27:2338–2345

    Article  CAS  PubMed  Google Scholar 

  52. Enzan N, Matsushima S, Ide T et al (2020) Spironolactone use is associated with improved outcomes in heart failure with mid-range ejection fraction. ESC Hear Fail 7:336–344

    Article  Google Scholar 

  53. Tsujimoto T, Kajio H (2020) Spironolactone use and improved outcomes in patients with heart failure with preserved ejection fraction with resistant hypertension. J Am Heart Assoc 9:e018827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xiang Y, Shi W, Li Z et al (2019) Efficacy and safety of spironolactone in the heart failure with mid-range ejection fraction and heart failure with preserved ejection fraction. Medicine (Baltimore) 98:e14967

    Article  CAS  PubMed  Google Scholar 

  55. Solomon SD, Vaduganathan M, L. Claggett B et al (2020) Sacubitril/valsartan across the spectrum of ejection fraction in heart failure. Circulation 141:352–61

  56. Solomon SD, McMurray JJV, Anand IS et al (2019) Angiotensin–neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med 381:1609–1620

    Article  CAS  PubMed  Google Scholar 

  57. Nie D, Xiong B, Qian J, Rong S, Yao Y, Huang J (2021) The effect of sacubitril-valsartan in heart failure patients with mid-range and preserved ejection fraction: a meta-analysis. Hear Lung Circ 30:683–691

    Article  Google Scholar 

  58. Abdul-Rahim AH, Shen L, Rush CJ, Jhund PS, Lees KR, McMurray JJV (2018) Effect of digoxin in patients with heart failure and mid-range (borderline) left ventricular ejection fraction. Eur J Heart Fail 20:1139–1145

    Article  CAS  PubMed  Google Scholar 

  59. Bhatt DL, Szarek M, Steg PG et al (2021) Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med 384:117–128

    Article  CAS  PubMed  Google Scholar 

  60. Anker SD, Butler J, Filippatos G et al (2021) Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 385:1451–1461

    Article  CAS  PubMed  Google Scholar 

  61. Butler J, Filippatos G, Jamal Siddiqi T et al (2022) Empagliflozin, health status, and quality of life in patients with heart failure and preserved ejection fraction: the EMPEROR-preserved trial. Circulation 145:184–193

    Article  CAS  PubMed  Google Scholar 

  62. Nassif ME, Windsor SL, Borlaug BA et al (2021) The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial. Nat Med 27:1954–1960

    Article  PubMed  PubMed Central  Google Scholar 

  63. Packer M, Butler J, Zannad F et al (2021) Effect of empagliflozin on worsening heart failure events in patients with heart failure and preserved ejection fraction: EMPEROR-preserved trial. Circulation 144:1284–1294

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kosiborod MN, Angermann CE, Collins SP et al (2020) Effects of empagliflozin on symptoms, physical limitations and quality of life in patients hospitalized for acute heart failure - results from the EMPULSE trial. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.122.059725. [Online ahead of print]

  65. Armstrong PW, Pieske B, Anstrom KJ et al (2020) Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med 382:1883–1893

    Article  CAS  PubMed  Google Scholar 

  66. Linde C, Curtis AB, Fonarow GC et al (2016) Cardiac resynchronization therapy in chronic heart failure with moderately reduced left ventricular ejection fraction: lessons from the Multicenter InSync Randomized Clinical Evaluation MIRACLE EF study. Int J Cardiol 202:349–355

    Article  PubMed  Google Scholar 

  67. Towbin JA, McKenna WJ, Abrams DJ et al (2019) 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Hear Rhythm 16:e301–e372

    Article  Google Scholar 

  68. Shah SJ, Feldman T, Ricciardi MJ et al (2018) One-year safety and clinical outcomes of a transcatheter interatrial shunt device for the treatment of heart failure with preserved ejection fraction in the reduce elevated left atrial pressure in patients with heart failure (REDUCE LAP-HF I) trial. JAMA Cardiol 3:968–977

    Article  PubMed  PubMed Central  Google Scholar 

  69. Feldman T, Mauri L, Kahwash R et al (2018) Transcatheter interatrial shunt device for the treatment of heart failure with preserved ejection fraction (REDUCE LAP-HF I [reduce elevated left atrial pressure in patients with heart failure]). Circulation 137:364–375

    Article  PubMed  Google Scholar 

  70. Shah SJ, Borlaug BA, Chung ES et al (2022) Atrial shunt device for heart failure with preserved and mildly reduced ejection fraction (REDUCE LAP-HF II): a randomised, multicentre, blinded, sham-controlled trial. Lancet 399:1130–1140

    Article  PubMed  Google Scholar 

  71. Packer DL, Piccini JP, Monahan KH et al (2021) Ablation versus drug therapy for atrial fibrillation in heart failure. Circulation 143:1377–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lopes RD, Alexander KP, Stevens SR et al (2020) Initial invasive versus conservative management of stable ischemic heart disease in patients with a history of heart failure or left ventricular dysfunction. Circulation 142:1725–1735

    Article  PubMed  PubMed Central  Google Scholar 

  73. Alehagen U, Benson L, Edner M, Dahlström U, Lund LH (2015) Association between use of statins and mortality in patients with heart failure and ejection fraction of ≥50%. Circ Hear Fail 8:862–870

    Article  CAS  Google Scholar 

  74. Branch KR, Probstfield JL, Eikelboom JW et al (2019) Rivaroxaban with or without aspirin in patients with heart failure and chronic coronary or peripheral artery disease. Circulation 140:529–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ponikowski P, van Veldhuisen DJ, Comin-Colet J et al (2015) Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur Heart J 36:657–668

    Article  CAS  PubMed  Google Scholar 

  76. Ponikowski P, Kirwan B-A, Anker SD et al (2020) Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial. Lancet 396:1895–1904

    Article  CAS  PubMed  Google Scholar 

  77. Doukky R, Mangla A, Ibrahim Z et al (2016) Impact of physical inactivity on mortality in patients with heart failure. Am J Cardiol 117:1135–1143

    Article  PubMed  PubMed Central  Google Scholar 

  78. Adler ED, Voors AA, Klein L et al (2020) Improving risk prediction in heart failure using machine learning. Eur J Heart Fail 22:139–147

    Article  PubMed  Google Scholar 

  79. Borrelli C, Gentile F, Sciarrone P et al (2019) Central and obstructive apneas in heart failure with reduced, mid-range and preserved ejection fraction. Front Cardiovasc Med 6:125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The listed authors contributed to the manuscript as follows: conception and design of manuscript, or both (M.C, and P.V.); manuscript drafting or critical revision for important intellectual content (M.C., Y.R., S.D., C.I.R., N.N., P.V.); final approval of the manuscript submitted (M.C., Y.R., S.D., C.I.R., N.N., P.V.).

Corresponding author

Correspondence to Marta Cvijic.

Ethics declarations

Conflict of interest

Dr. Cvijic, Dr. Rib, Dr. Danojevic, Dr. Radulescu, Dr. Nazghaidze, and Dr.Vardas report no relationships that could be construed as a conflict of interest. Dr. Vardas reports personal fees from European Society of Cardiology, personal fees from Hygeia Hospitals Group, HHG, and personal fees from Servier International, outside the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cvijic, M., Rib, Y., Danojevic, S. et al. Heart failure with mildly reduced ejection fraction: from diagnosis to treatment. Gaps and dilemmas in current clinical practice. Heart Fail Rev 28, 767–780 (2023). https://doi.org/10.1007/s10741-022-10267-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-022-10267-1

Keywords

Navigation