Skip to main content

Advertisement

Log in

Exercise capacity, physical activity, and morbidity

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Muscle weakness and atrophy are key characteristics of the aging adult but can also be found in chronically ill patients with heart failure, cancer, renal failure, and chronic infectious diseases all associated with an accelerated level of muscle dysfunction. Reduced physical activity levels and exercise intolerance increase muscle loss and decrease quality of life in both the aging and heart failure populations. The purpose of this review is to provide an overview of the effects of aging and heart failure on skeletal muscle function and how exercise training can improve long-term outcomes associated with skeletal muscle dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miljkovic N, Lim JY, Miljkovic I, Frontera WR (2015) Aging of skeletal muscle fibers. Annals of rehabilitation medicine 39(2):155–162

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brassard P, Maltais F, Noel M, Doyon JF, LeBlanc P, Allaire J et al (2006) Skeletal muscle endurance and muscle metabolism in patients with chronic heart failure. The Canadian journal of cardiology 22(5):387–392

    Article  PubMed  PubMed Central  Google Scholar 

  3. Duscha BD, Schulze PC, Robbins JL, Forman DE (2008) Implications of chronic heart failure on peripheral vasculature and skeletal muscle before and after exercise training. Heart Fail Rev 13(1):21–37

    Article  PubMed  Google Scholar 

  4. Montero-Fernandez N, Serra-Rexach JA (2013) Role of exercise on sarcopenia in the elderly. European journal of physical and rehabilitation medicine 49(1):131–143

    CAS  PubMed  Google Scholar 

  5. Rolland Y, Abellan van Kan G, Gillette-Guyonnet S, Vellas B (2011) Cachexia versus sarcopenia. Curr Opin Clin Nutr Metab Care. 14(1):15–21

    Article  PubMed  Google Scholar 

  6. Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M (2012) Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol 3:260

    Article  PubMed  PubMed Central  Google Scholar 

  7. Andersen JL (2003) Muscle fibre type adaptation in the elderly human muscle. Scand J Med Sci Sports 13(1):40–47

    Article  PubMed  Google Scholar 

  8. Boffoli D, Scacco SC, Vergari R, Solarino G, Santacroce G, Papa S (1994) Decline with age of the respiratory chain activity in human skeletal muscle. Biochim Biophys Acta 1226(1):73–82

    Article  CAS  PubMed  Google Scholar 

  9. Porter C, Hurren NM, Cotter MV, Bhattarai N, Reidy PT, Dillon EL et al (2015) Mitochondrial respiratory capacity and coupling control decline with age in human skeletal muscle. Am J Physiol Endocrinol Metab 309(3):E224–E232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rasmussen UF, Krustrup P, Kjaer M, Rasmussen HN (2003) Human skeletal muscle mitochondrial metabolism in youth and senescence: no signs of functional changes in ATP formation and mitochondrial oxidative capacity. Pflugers Arch 446(2):270–278

    Article  CAS  PubMed  Google Scholar 

  11. Johnson ML, Lanza IR, Short DK, Asmann YW, Nair KS (2014) Chronically endurance-trained individuals preserve skeletal muscle mitochondrial gene expression with age but differences within age groups remain. Physiol Rep 2(12). doi:10.14814/phy2.12239

  12. Demontis F, Piccirillo R, Goldberg AL, Perrimon N (2013) The influence of skeletal muscle on systemic aging and lifespan. Aging Cell 12(6):943–949

    Article  CAS  PubMed  Google Scholar 

  13. Ruiz JR, Sui X, Lobelo F, Morrow JR Jr, Jackson AW, Sjostrom M et al (2008) Association between muscular strength and mortality in men: prospective cohort study. BMJ 337:a439

    Article  PubMed  Google Scholar 

  14. Srikanthan P, Karlamangla AS (2014) Muscle mass index as a predictor of longevity in older adults. Am J Med 127(6):547–553

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sharples AP, Hughes DC, Deane CS, Saini A, Selman C, Stewart CE (2015) Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging Cell 14(4):511–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rasmussen BB, Fujita S, Wolfe RR, Mittendorfer B, Roy M, Rowe VL et al (2006) Insulin resistance of muscle protein metabolism in aging. FASEB J 20(6):768–769

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ryan AS (2010) Exercise in aging: its important role in mortality, obesity and insulin resistance. Aging Health 6(5):551–563

    Article  PubMed  PubMed Central  Google Scholar 

  18. Perkisas S, Vandewoude M (2016) Where frailty meets diabetes. Diabetes Metab Res Rev 32(1):261-7

  19. Curtis E, Litwic A, Cooper C, Dennison E (2015) Determinants of muscle and bone aging. J Cell Physiol 230(11):2618–2625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schaap LA, Pluijm SM, Deeg DJ, Visser M (2006) Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med 119(6):526 e9–526 17

    Article  Google Scholar 

  21. Budui SL, Rossi AP, Zamboni M (2015) The pathogenetic bases of sarcopenia. Clin Cases Miner Bone Metab 12(1):22–26

    PubMed  PubMed Central  Google Scholar 

  22. Borst SE (2004) The role of TNF-alpha in insulin resistance. Endocrine 23(2–3):177–182

    Article  CAS  PubMed  Google Scholar 

  23. Frost RA, Lang CH (2007) Protein kinase B/Akt: a nexus of growth factor and cytokine signaling in determining muscle mass. J Appl Physiol (1985) 103(1):378–387

    Article  CAS  Google Scholar 

  24. Santos-Parker JR, LaRocca TJ, Seals DR (2014) Aerobic exercise and other healthy lifestyle factors that influence vascular aging. Adv Physiol Educ 38(4):296–307

    Article  PubMed  PubMed Central  Google Scholar 

  25. Barker WH, Mullooly JP, Getchell W (2006) Changing incidence and survival for heart failure in a well-defined older population, 1970-1974 and 1990-1994. Circulation 113(6):799–805

    Article  PubMed  Google Scholar 

  26. Haykowsky MJ, Brubaker PH, Stewart KP, Morgan TM, Eggebeen J, Kitzman DW (2012) Effect of endurance training on the determinants of peak exercise oxygen consumption in elderly patients with stable compensated heart failure and preserved ejection fraction. J Am Coll Cardiol 60(2):120–128

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mancini DM, Walter G, Reichek N, Lenkinski R, McCully KK, Mullen JL et al (1992) Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation 85(4):1364–1373

    Article  CAS  PubMed  Google Scholar 

  28. Zizola C, Schulze PC (2013) Metabolic and structural impairment of skeletal muscle in heart failure. Heart Fail Rev 18(5):623–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ferrari R, Bachetti T, Confortini R, Opasich C, Febo O, Corti A et al (1995) Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation 92(6):1479–1486

    Article  CAS  PubMed  Google Scholar 

  30. Testa M, Yeh M, Lee P, Fanelli R, Loperfido F, Berman JW et al (1996) Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol 28(4):964–971

    Article  CAS  PubMed  Google Scholar 

  31. Clark AL, Poole-Wilson PA, Coats AJ (1996) Exercise limitation in chronic heart failure: central role of the periphery. J Am Coll Cardiol 28(5):1092–1102

    Article  CAS  PubMed  Google Scholar 

  32. Sullivan MJ, Duscha BD, Klitgaard H, Kraus WE, Cobb FR, Saltin B (1997) Altered expression of myosin heavy chain in human skeletal muscle in chronic heart failure. Med Sci Sports Exerc 29(7):860–866

    Article  CAS  PubMed  Google Scholar 

  33. Drexler H, Riede U, Munzel T, Konig H, Funke E, Just H (1992) Alterations of skeletal muscle in chronic heart failure. Circulation 85(5):1751–1759

    Article  CAS  PubMed  Google Scholar 

  34. Hambrecht R, Fiehn E, Yu J, Niebauer J, Weigl C, Hilbrich L et al (1997) Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure. J Am Coll Cardiol 29(5):1067–1073

    Article  CAS  PubMed  Google Scholar 

  35. Simonini A, Chang K, Yue P, Long CS, Massie BM (1999) Expression of skeletal muscle sarcoplasmic reticulum calcium-ATPase is reduced in rats with postinfarction heart failure. Heart 81(3):303–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Spangenburg EE, Lees SJ, Otis JS, Musch TI, Talmadge RJ, Williams JH (2002) Effects of moderate heart failure and functional overload on rat plantaris muscle. J Appl Physiol (1985) 92(1):18–24

    CAS  Google Scholar 

  37. Simonini A, Long CS, Dudley GA, Yue P, McElhinny J, Massie BM (1996) Heart failure in rats causes changes in skeletal muscle morphology and gene expression that are not explained by reduced activity. Circ Res 79(1):128–136

    Article  CAS  PubMed  Google Scholar 

  38. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J et al (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18(1):39–51

    Article  CAS  PubMed  Google Scholar 

  39. Schulze PC, Fang J, Kassik KA, Gannon J, Cupesi M, MacGillivray C et al (2005) Transgenic overexpression of locally acting insulin-like growth factor-1 inhibits ubiquitin-mediated muscle atrophy in chronic left-ventricular dysfunction. Circ Res 97(5):418–426

    Article  CAS  PubMed  Google Scholar 

  40. Wang EY, Biala AK, Gordon JW, Kirshenbaum LA (2012) Autophagy in the heart: too much of a good thing? J Cardiovasc Pharmacol 60(2):110–117

    Article  CAS  PubMed  Google Scholar 

  41. Rifki OF, Hill JA (2012) Cardiac autophagy: good with the bad. J Cardiovasc Pharmacol 60(3):248–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Carnio S, LoVerso F, Baraibar MA, Longa E, Khan MM, Maffei M et al (2014) Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep 8(5):1509–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sacheck JM, Hyatt JP, Raffaello A, Jagoe RT, Roy RR, Edgerton VR et al (2007) Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB J 21(1):140–155

    Article  CAS  PubMed  Google Scholar 

  44. Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH et al (2006) PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci U S A 103(44):16260–16265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maeder MT, Thompson BR, Brunner-La Rocca HP, Kaye DM (2010) Hemodynamic basis of exercise limitation in patients with heart failure and normal ejection fraction. J Am Coll Cardiol 56(11):855–863

    Article  PubMed  Google Scholar 

  46. Bhella PS, Prasad A, Heinicke K, Hastings JL, Arbab-Zadeh A, Adams-Huet B et al (2011) Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur J Heart Fail 13(12):1296–1304

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348(20):2007–2018

    Article  PubMed  Google Scholar 

  48. Pina IL, Apstein CS, Balady GJ, Belardinelli R, Chaitman BR, Duscha BD et al (2003) Exercise and heart failure: a statement from the American Heart Association Committee on exercise, rehabilitation, and prevention. Circulation 107(8):1210–1225

    Article  PubMed  Google Scholar 

  49. Argiles JM, Busquets S, Felipe A, Lopez-Soriano FJ (2005) Molecular mechanisms involved in muscle wasting in cancer and ageing: cachexia versus sarcopenia. Int J Biochem Cell Biol 37(5):1084–1104

    Article  CAS  PubMed  Google Scholar 

  50. Bowen TS, Schuler G, Adams V (2015) Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle. 6(3):197–207

    Article  PubMed  PubMed Central  Google Scholar 

  51. Alway SE, Myers MJ, Mohamed JS (2014) Regulation of satellite cell function in sarcopenia. Front Aging Neurosci 6:246

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sousa-Victor P, Gutarra S, Garcia-Prat L, Rodriguez-Ubreva J, Ortet L, Ruiz-Bonilla V et al (2014) Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506(7488):316–321

    Article  CAS  PubMed  Google Scholar 

  53. Templeton DL, Kelly AS, Steinberger J, Dengel DR (2010) Lower relative bone mineral content in obese adolescents: role of non-weight bearing exercise. Pediatr Exerc Sci 22(4):557–568

    Article  PubMed  Google Scholar 

  54. Society AT (1995) Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease. American Thoracic Society. Am J Respir Crit Care Med 152(5 Pt 2):S77–121

    Google Scholar 

  55. Kim S, Yamabe H, Yokoyama M (1999) Hemodynamic characteristics during treadmill and bicycle exercise in chronic heart failure: mechanism for different responses of peak oxygen uptake. Jpn Circ J 63(12):965–970

    Article  CAS  PubMed  Google Scholar 

  56. Bittner V, Weiner DH, Yusuf S, Rogers WJ, McIntyre KM, Bangdiwala SI et al (1993) Prediction of mortality and morbidity with a 6-minute walk test in patients with left ventricular dysfunction. SOLVD Investigators Jama 270(14):1702–1707

    CAS  PubMed  Google Scholar 

  57. Chung CJ, Wu C, Jones M, Kato TS, Dam TT, Givens RC et al (2014) Reduced handgrip strength as a marker of frailty predicts clinical outcomes in patients with heart failure undergoing ventricular assist device placement. J Card Fail 20(5):310–315

    Article  PubMed  PubMed Central  Google Scholar 

  58. Forman DE, Daniels KM, Cahalin LP, Zavin A, Allsup K, Cao P, et al (2014) Analysis of skeletal muscle gene expression patterns and the impact of functional capacity in patients with systolic heart failure. Journal of cardiac failure. 20(6):422-30

  59. Zavin A, Daniels K, Arena R, Allsup K, Lazzari A, Joseph J et al (2013) Adiposity facilitates increased strength capacity in heart failure patients with reduced ejection fraction. Int J Cardiol 167(6):2468–2471

    Article  PubMed  Google Scholar 

  60. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing 39(4):412–423

    Article  PubMed  PubMed Central  Google Scholar 

  61. McLean RR, Shardell MD, Alley DE, Cawthon PM, Fragala MS, Harris TB et al (2014) Criteria for clinically relevant weakness and low lean mass and their longitudinal association with incident mobility impairment and mortality: the foundation for the National Institutes of Health (FNIH) sarcopenia project. J Gerontol A Biol Sci Med Sci 69(5):576–583

    Article  PubMed  PubMed Central  Google Scholar 

  62. Batsis JA, Mackenzie TA, Barre LK, Lopez-Jimenez F, Bartels SJ (2014) Sarcopenia, sarcopenic obesity and mortality in older adults: results from the National Health and Nutrition Examination Survey III. Eur J Clin Nutr 68(9):1001–1007

    Article  CAS  PubMed  Google Scholar 

  63. Landi F, Cruz-Jentoft AJ, Liperoti R, Russo A, Giovannini S, Tosato M et al (2013) Sarcopenia and mortality risk in frail older persons aged 80 years and older: results from ilSIRENTE study. Age Ageing 42(2):203–209

    Article  PubMed  Google Scholar 

  64. Clark BC, Manini TM (2010) Functional consequences of sarcopenia and dynapenia in the elderly. Curr Opin Clin Nutr Metab Care 13(3):271–276

    Article  PubMed  PubMed Central  Google Scholar 

  65. Farkas J, von Haehling S, Kalantar-Zadeh K, Morley JE, Anker SD, Lainscak M (2013) Cachexia as a major public health problem: frequent, costly, and deadly. J Cachexia Sarcopenia Muscle. 4(3):173–178

    Article  PubMed  PubMed Central  Google Scholar 

  66. Anker SD, Ponikowski P, Varney S, Chua TP, Clark AL, Webb-Peploe KM et al (1997) Wasting as independent risk factor for mortality in chronic heart failure. Lancet 349(9058):1050–1053

    Article  CAS  PubMed  Google Scholar 

  67. von Haehling S, Lainscak M, Springer J, Anker SD (2009) Cardiac cachexia: a systematic overview. Pharmacol Ther 121(3):227–252

    Article  Google Scholar 

  68. von Haehling S, Anker SD (2010) Cachexia as a major underestimated and unmet medical need: facts and numbers. J Cachexia Sarcopenia Muscle. 1(1):1–5

    Article  Google Scholar 

  69. Kalantar-Zadeh K, Rhee C, Sim JJ, Stenvinkel P, Anker SD, Kovesdy CP (2013) Why cachexia kills: examining the causality of poor outcomes in wasting conditions. J Cachexia Sarcopenia Muscle 4(2):89–94

    Article  PubMed  PubMed Central  Google Scholar 

  70. Alves CR, da Cunha TF, da Paixao NA, Brum PC (2015) Aerobic exercise training as therapy for cardiac and cancer cachexia. Life Sci 125:9–14

    Article  CAS  PubMed  Google Scholar 

  71. von Haehling S, Anker SD (2014) Treatment of cachexia: an overview of recent developments. J Am Med Dir Assoc 15(12):866–872

    Article  Google Scholar 

  72. Cruz-Jentoft AJ, Landi F, Schneider SM, Zuniga C, Arai H, Boirie Y et al (2014) Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 43(6):748–759

    Article  PubMed  PubMed Central  Google Scholar 

  73. Forman DE, Clare R, Kitzman DW, Ellis SJ, Fleg JL, Chiara T et al (2009) Relationship of age and exercise performance in patients with heart failure: the HF-ACTION study. Am Heart J 158(4 Suppl):S6–S15

    Article  PubMed  PubMed Central  Google Scholar 

  74. O'Connor CM, Whellan DJ, Lee KL, Keteyian SJ, Cooper LS, Ellis SJ et al (2009) Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 301(14):1439–1450

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lavie CJ, Arena R, Swift DL, Johannsen NM, Sui X, Lee DC et al (2015) Exercise and the cardiovascular system: clinical science and cardiovascular outcomes. Circ Res 117(2):207–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee DC, Pate RR, Lavie CJ, Sui X, Church TS, Blair SN (2014) Leisure-time running reduces all-cause and cardiovascular mortality risk. J Am Coll Cardiol 64(5):472–481

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wen CP, Wai JP, Tsai MK, Yang YC, Cheng TY, Lee MC et al (2011) Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet 378(9798):1244–1253

    Article  PubMed  Google Scholar 

  78. Taylor RS, Sagar VA, Davies EJ, Briscoe S, Coats AJ, Dalal H et al (2014) Exercise-based rehabilitation for heart failure. The Cochrane database of systematic reviews 4:CD003331

    Google Scholar 

  79. Bohm M, Swedberg K, Komajda M, Borer JS, Ford I, Dubost-Brama A et al (2010) Heart rate as a risk factor in chronic heart failure (SHIFT): the association between heart rate and outcomes in a randomised placebo-controlled trial. Lancet 376(9744):886–894

    Article  PubMed  Google Scholar 

  80. Gielen S, Laughlin MH, O'Conner C, Duncker DJ (2015) Exercise training in patients with heart disease: review of beneficial effects and clinical recommendations. Prog Cardiovasc Dis 57(4):347–355

    Article  PubMed  Google Scholar 

  81. Raymond MJ, Bramley-Tzerefos RE, Jeffs KJ, Winter A, Holland AE (2013) Systematic review of high-intensity progressive resistance strength training of the lower limb compared with other intensities of strength training in older adults. Arch Phys Med Rehabil 94(8):1458–1472

    Article  PubMed  Google Scholar 

  82. Arena R, Myers J, Forman DE, Lavie CJ, Guazzi M (2013) Should high-intensity-aerobic interval training become the clinical standard in heart failure? Heart Fail Rev 18(1):95–105

    Article  PubMed  Google Scholar 

  83. Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM et al (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115(24):3086–3094

    Article  PubMed  Google Scholar 

  84. Hirai DM, Musch TI, Poole DC (2015) Exercise training in chronic heart failure: improving skeletal muscle O2 transport and utilization. Am J Physiol Heart Circ Physiol 309(9):1419–39

  85. Coats AJ (2011) Clinical utility of exercise training in chronic systolic heart failure. Nat Rev Cardiol 8(7):380–392

    Article  PubMed  Google Scholar 

  86. Esposito F, Reese V, Shabetai R, Wagner PD, Richardson RS (2011) Isolated quadriceps training increases maximal exercise capacity in chronic heart failure: the role of skeletal muscle convective and diffusive oxygen transport. J Am Coll Cardiol 58(13):1353–1362

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Christian Schulze.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunjes, D.L., Kennel, P.J. & Christian Schulze, P. Exercise capacity, physical activity, and morbidity. Heart Fail Rev 22, 133–139 (2017). https://doi.org/10.1007/s10741-016-9592-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-016-9592-1

Keywords

Navigation