Skip to main content

Advertisement

Log in

Standard and etiology-directed evidence-based therapies in myocarditis: state of the art and future perspectives

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

In inflammatory dilated cardiomyopathy and myocarditis, there is apart from heart failure and antiarrhythmic therapies no alternative to an etiologically driven specific treatment. Their prerequisites are noninvasive and invasive biomarkers including endomyocardial biopsy and PCR on cardiotropic agents. This review deals with the different etiologies of myocarditis and inflammatory cardiomyopathy including the genetic background, the predisposition for heart failure and inflammation. It analyses the epidemiologic shift in pathogenetic agents in the last 20 years, the role of innate and acquired immunity including the T cell and B cell driven immune responses. On this basis, it summarizes phases and clinical faces of myocarditis. It gives an up-to-date information on current treatment options starting with heart failure and antiarrhythmic therapy. Although inflammation can resolve spontaneously, often specific treatment directed to the causative etiology is required. For fulminant, acute and chronic autoreactive myocarditis immunosuppressive treatment is beneficial; for viral cardiomyopathy and myocarditis, IVIG can resolve inflammation and is as successful as interferon therapy in enteroviral and adenoviral myocarditis. Eradication of parvovirus B19 and HHV6 myocarditis is still a problem by anyone of these treatment options. The potential of stem cell therapy has to be tested in future trials. In perimyocardial disease, a locoregional approach with high local doses and low systemic side effects have been shown highly efficient by intrapericardial treatment of triamcinolonacetate facilitated by pericardioscopy for adequate etiopathogenetic diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kerr WW (1904) Myocarditis. Cal State J Med 2:369–371

    PubMed  CAS  Google Scholar 

  2. Maisch B, Noutsias M, Ruppert V, Richter A, Pankuweit S (2012) Cardiomyopathies—classifications, diagnosis, and treatment. Heart Fail Clin 8:53–78. doi:10.1016/jhfc.2011.08.014

    PubMed  Google Scholar 

  3. Hickie JB, Hall GV (1960) The cardiomyopathies: a report of fifty cases. Australas Ann Med 9:258–270

    PubMed  CAS  Google Scholar 

  4. Goodwin JF, Gordon H, Hollman A et al (1961) Clinical aspects of cardiomyopathy. Br Med J 1:69–79.5

    PubMed  CAS  Google Scholar 

  5. Report of the WHO/ISFC (1980) Task Force on the definition and classification of cardiomyopathies. Br Heart J 44:672–674

    Google Scholar 

  6. Richardson P, McKenna W, Bristow M, Maisch B et al (1996) Report of the 1995 World Health Organization/international society and federation of cardiology task force on the definition and classification of cardiomyopathies. Circulation 93:841–842

    PubMed  CAS  Google Scholar 

  7. Maisch B, Pankuweit S (2012) Current treatment options in (peri)myocarditis and inflammatory cardiomyopathy. Herz 37:644–656. doi:10.1007/s00059-012-3679-9

    Google Scholar 

  8. Aretz HT, Billingham M, Olsen E et al (1987) Myocarditis: the Dallas criteria. Hum Pathol 18:619–624

    PubMed  CAS  Google Scholar 

  9. Maisch B, Bültman B, Factor S et al (1999) World Heart Federation consensus conference’s definition of inflammatory cardiomyopathy (myocarditis): report from two expert committees on histology and viral cardiomyopathy. Heartbeat 4:3–4

    Google Scholar 

  10. Maisch B, Portig I, Ristic A et al (2000) Definition of inflammatory cardiomyopathy (myocarditis): on the way to consensus. Herz 25:200–209

    PubMed  CAS  Google Scholar 

  11. Maisch B, Richter A, Sandmöller A, Portig I, Pankuweit S (2005) for the members of project 9a in the BMBF-Heart Failure Network. Inflammatory dilated cardiomyopathy (DCMI). Herz 30:535–540

    Google Scholar 

  12. Pankuweit S, Portig I, Eckhardt H et al (2000) Prevalence of viral genome in endomyocardial biopsies from patients with inflammatory heart muscle disease. Herz 25:221–226

    PubMed  CAS  Google Scholar 

  13. Paulus WJ, Tschöpe C, Sanderson JE et al (2007) How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the heart failure and echocardiography associations of the European society of cardiology. Eur Heart J 28(20):2539–2555

    PubMed  Google Scholar 

  14. Arbustini E, Morbini P, Pilotto A et al (2001) Familial dilated cardiomyopathy: from clinical presentation to molecular genetics. Am J Hum Genet 69:249–260

    Google Scholar 

  15. Mason JW (2003) Myocarditis and dilated cardiomyopathy: an inflammatory link. Cardiovasc Res 60:5–10

    PubMed  CAS  Google Scholar 

  16. Shaw T, Elliot P, McKenna WJ (2002) Dilated cardiomyopathy: a genetically heterogeneous disease. Lancet 360:654–655

    PubMed  Google Scholar 

  17. Maron BJ, Towbin JA, Thiene G et al (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113:1807–1816

    PubMed  Google Scholar 

  18. Elliott P, Andersson B, Arbustini E et al (2008) Classification of the cardiomyopathies: a position statement from the European society of cardiology working group on myocardial and pericardial diseases. Eur Heart J 29:270–276

    PubMed  Google Scholar 

  19. Pankuweit S, Richter A, Ruppert V et al (2009) Classification of cardiomyopathies and indication for endomyocardial biopsy revisited. Herz 34:55–62

    PubMed  Google Scholar 

  20. Mestroni L, Maisch B, McKenna WJ, Schwartz K, Charron P, Rocco C, Tesson F, Richter A, Wilke A, Komajda M (1999) Guidelines for the study of familial dilated cardiomyopathies. Collaborative research group of the European human and capital mobility project on familial dilated cardiomyopathy. Eur Heart J 20(2):93–102

    PubMed  CAS  Google Scholar 

  21. Hershberger RE, Cowan J, Morales A, Siegfried JD (2009) Progress with genetic cardiomyopathies: screening, counseling, and testing in dilated, hypertrophic, and arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Heart Fail 2(3):253–261

    PubMed  Google Scholar 

  22. Kimura A (2008) Molecular aetiology and pathogenesis of hereditary cardiomyopathy. Circ J 72(Suppl. A):A-38–A-48

    Google Scholar 

  23. Duboscq-Bidot L, Charron P, Ruppert V, Fauchier L, Richter A, Tavazzi L, Arbustini E, Wichter T, Maisch B, Komajda M, Isnard R (2009) EUROGENE Heart Failure Network. Mutations in the ANKRD1 gene encoding CARP are responsible for human dilated cardiomyopathy. Eur Heart J 30(17):2128–2136

    PubMed  CAS  Google Scholar 

  24. Maekawa Y, Ouzounian M, Opavsky MA, Liu PP (2007) Connecting the missing link between dilated cardiomyopathy and viral myocarditis: virus, cytoskeleton, and innate immunity. Circulation 115(1):5–8

    PubMed  Google Scholar 

  25. Linde A, Mosier D, Blecha F, Melgarejo T (2007) Innate immunity and inflammation—new frontiers in comparative cardiovascular pathology. Cardiovasc Res 73(1):26–36

    PubMed  CAS  Google Scholar 

  26. Mann DL (2011) The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circ Res 108(9):1133–1145

    PubMed  CAS  Google Scholar 

  27. Maisch B, Richter A, Koelsch S et al (2006) Management of patients with suspected (peri-)myocarditis and inflammatory dilated cardiomyopathy. Herz 31:881–890

    PubMed  Google Scholar 

  28. Cooper LT, Baughman KL, Feldman AM, for the American Heart Association, American College of Cardiology, and European Society of Cardiology et al (2007) The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Circulation 116:2216–2233

    PubMed  Google Scholar 

  29. Pankuweit S, Moll R, Baandrup U, Portig I, Hufnagel G, Maisch B (2003) Prevalence of the parvovirus B19 genome in endomyocardial biopsy specimens. Hum Pathol 34:497–500

    PubMed  Google Scholar 

  30. Kühl U, Pauschinger M, Noutsias M et al (2005) High prevalence of viral genomes and multiple viral infections in the myocardium of adults with „idiopathic“left ventricular dysfunction. Circulation 11:887–893

    Google Scholar 

  31. Küthe F, Lindner J, Matwschke K, Wenzel JJ, Norja P, Ploetze K, Schaal S, Kamvissi V, Bornstein SR, Schwandebeck U, Modrow S (2009) Prevalence of parvovirus B19 and human Bocavirus DNA in the heart of patients with no evidence of dilated cardiomyopathy or myocarditis. Clin Infect Dis 49:1660–1666

    Google Scholar 

  32. Stewart GC, Lopez-Molina J, Gottumukkala RV, Rosner GF, Anello MS, Hecht JL, Winters GL, Padera RF, Baughman KL, Lipes MA (2011) Myocardial parvovirus B19 persistence: lack of association with clinicopathologic phenotype in adults with heart failure. Circ Heart Fail 4(1):71–78

    PubMed  Google Scholar 

  33. Maisch B, Ristic AD, Hufnagel G et al (2002) Dilated cardiomyopathies as a cause of congestive heart failure. Herz 27:113–134

    PubMed  Google Scholar 

  34. Maisch B, Ristic AD, Portig I, Pankuweit S (2003) Human viral cardiomyopathy. Front Biosci 8:S39–S67

    PubMed  CAS  Google Scholar 

  35. Maisch B, Outzen H, Roth D, Hiby A, Herzum M, Hengstenberg C, Hufnagel G, Schönian U, Kochsiek K (1991) Prognostic determinants in conventionally treated myocarditis and perimyocarditis-Focus on antimyolemmal antibodies. Eur Heart J 12(Suppl. B):81–87

    PubMed  Google Scholar 

  36. Kindermann I, Kindermann M, Kandolf R, Klingel K, Bultmann B, Muller T, Lindinger A, Boehm M (2008) Predictors of outcome in patients with suspected myocarditis. Circulation 118:639–648

    PubMed  Google Scholar 

  37. Schulz-Menger J, Maisch B, Abdel-Aty H et al (2007) Integrated biomarkers in cardiomyopathies: cardiovascular magnetic resonance imaging combined with molecular and immunologic markers. A stepwise approach for diagnosis and treatment. Herz 32:458–472

    PubMed  Google Scholar 

  38. Maisch B, Bülowius U, Schmier K, Klopf D, Koper D, Sibelis T, Kochsiek K (1985) Immunological cellular regulator and effector mechanisms in myocarditis. Herz 10:8–14

    PubMed  CAS  Google Scholar 

  39. Maisch B, Berg PA, Kochsiek K (1980) Autoantibodies and serum inhibition factors (SIF) in patients with myocarditis. Klin Wochenschr 58(5):219–225

    PubMed  CAS  Google Scholar 

  40. Maisch B, Trostel-Soeder R, Berg PA, Kochsiek K (1981) Assessment of antibody mediated cytolysis of vital adult cardiocytes isolated by centrifugation in a continuous gradient of Percoll TM in patients with acute myocarditis. J Immunol Methods 44:159–169

    PubMed  CAS  Google Scholar 

  41. Maisch B, Trostel-Soeder R, Stechemesser E, Berg PA, Kochsiek K (1982) Diagnostic relevance of humoral and cell-mediated immune reactions in patients with acute viral myocarditis. Clin Exp Immunol 48:533–545

    PubMed  CAS  Google Scholar 

  42. Maisch B, Herzum M, Schönian U (1993) Immunomodulating factors and immunosuppressive drugs in the therapy of myocarditis. Scand J Infect Dis 88:149–162

    CAS  Google Scholar 

  43. Maisch B, Ristic AD, Hufnagel G, Pankuweit S (2002) Pathophysiology of viral myocarditis: the role of humoral immune response. Cardiovasc Pathol 11(2):112–122

    PubMed  CAS  Google Scholar 

  44. Maisch B (1985) Surface antigens of adult heart cells and their use in diagnosis. Basic Res Cardiol 80(Suppl. 1):47–52

    PubMed  Google Scholar 

  45. Maisch B (1987) The sarcolemma as antigen in the secondary immunopathogenesis of myopericarditis. Eur Heart J 8(Suppl. I):155–165

    Google Scholar 

  46. Maisch B, Drude L, Hengstenberg C, Herzum M, Hufnagel G, Kochsiek K, Schmaltz A, Schönian U, Schwab D (1991) Are antisarcolemmal(ASAs) and antimyolemmal antibodies(AMLAs) “natural” antibodies? Basic Res Cardiol 86(Suppl. 3):101–114

    PubMed  Google Scholar 

  47. Maisch B, Drude L, Hengstenberg C, Hufnagel G, Schönian U, Schwab D (1992) Cytolytic anticardiac membrane antibodies in the pathogenesis of myopericarditis. Postgrad Med J 68(Suppl. 1):11–16

    Google Scholar 

  48. Maisch B, Bauer E, Cirsi M, Kochsiek K (1993) Cytolytic cross-reactive antibodies directed against the cardiac membrane and viral proteins in coxsackievirus B3 and B4 myocarditis. Characterization and pathogenetic relevance. Circulation 87(Suppl. IV):49–65

    Google Scholar 

  49. Maisch B (1989) Autoreactivity to the cardiac myocyte, connective tissue and the extracellular matrix in heart disease and postcardiac injury. Springer Semin Immunopathol 11:369–396

    PubMed  CAS  Google Scholar 

  50. Maisch B, Deeg P, Liebau G, Kochsiek K (1983) Diagnostic relevance of humoral and cytotoxic immune reactions in primary and secondary dilated cardiomyopathy. Am J Cardiol 52:1072–1078

    PubMed  CAS  Google Scholar 

  51. Maisch B, Wedeking U, Kochsiek K (1987) Quantitative assessment of antilaminin antibodies in myocarditis and perimyocarditis. Eur Heart J 8(Suppl. I):223–235

    Google Scholar 

  52. Obermayer U, Scheidler J, Maisch B (1987) Antibodies against micro- and intermediate filaments in carditis and dilated cardiomyopaty—are they a diagnostic marker? Eur Heart J 8(Suppl. I):181–186

    Google Scholar 

  53. Wittner B, Maisch B, Kochsiek K (1983) Quantification of antimyosin antibodies in experimental myocarditis by a new solidphase fluorometric assay. J Immunol Methods 64:239–247

    PubMed  CAS  Google Scholar 

  54. Klein R, Maisch B, Kochsiek K, Berg PA (1984) Demonstration of organ specific antibodies against heart mitochondria (anti M7) in sera from patients with some forms of heart diseases. J Clin Exp Immunol 58:283–292

    CAS  Google Scholar 

  55. Schultheiss HP, Bolte HD (1988) Immunological analysis of autoantibodies against the adenine nucleotide translocator in dilated cardiomyopathy. J Mol Cell Cardiol 17:603–617

    Google Scholar 

  56. Pohlner K, Portig I, Pankuweit S, Lottspeich F, Maisch B (1997) Identification of mitochondrial antigens recognized by the antibodies in sera of patients with dilated cardiomyopathy by two-dimensional gel electrophoresis and protein sequencing. Am J Cardiol 80:1040–1045

    PubMed  CAS  Google Scholar 

  57. Pankuweit S, Pohlner K, Lottspeich F et al (1997) Identification of mitochondrial antigens recognized by antibodies in sera of patients with dilated cardiomyopathy by two-dimensional gel electrophoresis and protein sequencing. Am J Cardiol 80:1040–1045

    PubMed  Google Scholar 

  58. Pankuweit S, Portig I, Lottspeich F et al (1997) Autoantibodies in sera of patients with myocarditis: characterization of the corresponding proteins by isoelectric focusing and N-terminal sequence analysis. J Mol Cell Cardiol 29:77–84

    PubMed  CAS  Google Scholar 

  59. Portig I, Pankuweit S, Maisch B (1997) Antibodies against stressproteins in the sera of patient with dilated cardiomyopathy. J Mol Cell Cardiol 29(8):2245–2251

    PubMed  CAS  Google Scholar 

  60. Wallukat G, Wollenberg A, Morwinski R, Pitschner HF (1995) Anti-beta1-adrenoceptor autoantibodies with chronotropic activity from the serum of patients with dilated cardiomyopathy: mapping of epitopes in the first and second extracellular loops. J Mol Cell Cardiol 27:3977–4006

    Google Scholar 

  61. Magnusson Y, Wallukat G, Waagstein F, Hjalmarson A, Hoebeke J (1994) Autoimmunity in idiopathic dilated cardiomyopathy. Characterization of antibodies against the beta1-adrenoceptor with positive chronotropic effect. Circulation 89:2760–2767

    PubMed  CAS  Google Scholar 

  62. Christ T, Wettwer E, Dobrev D, Adolph E, Knaut M, Wallukat G, Ravens U (2001) Autoantibodies against the beta1-adrenoceptor from patients with dilated cadiomyopathy prolong action ptoential duration and enhance contractility in isolated cardiomyocytes. J Mol Cell Cardiol 33:1515–1525

    PubMed  CAS  Google Scholar 

  63. Jahns R, Boivin V, Siegmund C, Inselmann G, Lohse MJ, Boege F (1999) Autoantibodies activating human beta 1-adrenergic receptors are associated with reduced cardiac function in chronic heart failure. Circulation 99:649–654

    PubMed  CAS  Google Scholar 

  64. Jahns R, Bolvin V, Hein L et al (2004) Direct evidence for a beta1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J Clin Invest 113:1419–1429

    PubMed  CAS  Google Scholar 

  65. Fu LXM, Magnusson Y, Bergh CH, Waagstein F, Hjalmarson A, Hoebeke J (1993) Localization of a functional autoimmune epitope on the second extracellular loop of the human muscarinic actylcholin receptor 2 in patients with idiopathic dilated cardiomyopathy. J Clin Invest 91:1964–1968

    PubMed  CAS  Google Scholar 

  66. Maisch B, Lotze U, Schneider J, Kochsiek K (1986) Antibodies to human sinus node in sick-sinus syndrome. Pace 9(Part II):1101–1109

    PubMed  CAS  Google Scholar 

  67. Lotze U, Maisch B (1989) Humoral immune response to cardiac conducting tissue. Springer Semin Immunopathol 11:409–422

    PubMed  CAS  Google Scholar 

  68. Caforio ALP, Bonifacio E, Stewart JT et al (1990) Novel organ-specific circulating cardiac autoantibodies in dilated cardiomyopathy. J Am Coll Cardiol 15:1527–1534

    PubMed  CAS  Google Scholar 

  69. Caforio ALP, Keeling PJ, Zachara E et al (1994) Evidence from family studies for autoimmunity in dilated cardiomyopathy. Lancet 344:773–777

    PubMed  CAS  Google Scholar 

  70. Maisch B (1996) Alkohol und Herz. Herz 21:207–212

    PubMed  CAS  Google Scholar 

  71. Menz V, Grimm W, Hoffmann J, Maisch B (1996) Alcohol and rhythm disturbance: the holiday heart syndrome. Herz 21:227–231

    PubMed  CAS  Google Scholar 

  72. Rupp H, Brilla CG, Maisch B (1996) Hypertonie und Alkohol: zentrale und periphere Mechnismen. Herz 21:258–264

    PubMed  CAS  Google Scholar 

  73. Wilke A, Kaiser A, Ferency I, Maisch B (1996) Alkohol und Myokarditis. Herz 21:248–257

    PubMed  CAS  Google Scholar 

  74. Aneja A, Tang WH, Bansilal S et al (2008) Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 121(9):748–757

    PubMed  Google Scholar 

  75. Bertoni AG, Tsai A, Kasper EK, Brancati FL (2003) Diabetes and idiopathic cardiomyopathy: a nationwide case-control study. Diabetes Care 26:2791–2795

    PubMed  Google Scholar 

  76. Maisch B (2006) Obesity, diabetes mellitus and metabolic syndrome: the implications for heart and the vascular system. Herz 31(3):185–188

    PubMed  Google Scholar 

  77. Maisch B, Alter P, Pankuweit S (2011) Diabetic cardiomyopathy—fact or fiction? Herz 36:102–115

    PubMed  CAS  Google Scholar 

  78. Matucci-Cerinic M, Seferovic PM (2006) Heart involvement in autoimmune rheumatic diseases: the ‘‘phantom of the opera’’. Rheumatology (Oxford) 45(Suppl. 4):iv1–iv3

    Google Scholar 

  79. Maisch B (1992) The heart in rheumatic disease. Rheumatic diseases and sport. In: Baenkler HW (ed) Rheumatology, vol 16. Karger, Basel, pp 81–117

    Google Scholar 

  80. Maisch B, Pankuweit S, Karatolios K, Ristić AD (2006) Invasive techniques—from diagnosis to treatment. Rheumatology (Oxford) 45(Suppl. 4):iv32–iv38

    Google Scholar 

  81. Maksimović R, Seferović PM, Ristić AD, Vujisić-Tešić B, Simeunović DS, Radovanović G, Matucci-Cerinic M, Maisch B (2006) Cardiac imaging in rheumatic diseases. Rheumatology (Oxford) 45(Suppl. 4):iv26–iv31

    Google Scholar 

  82. Jacobson DL, Gange SJ, Rose NR et al (1997) Epidemiology and estimated population burden of selected autoimmune disease in the United States. Clin Immunol Immunopathol 84:223–243

    PubMed  CAS  Google Scholar 

  83. Whittacre CC (2001) Sex differences in autoimmune disease. Nat Immunol 2:777–780

    Google Scholar 

  84. Portig I, Sandmoller A, Pankuweit S, Maisch B (2005) Women and autoimmune diseases with cardiovascular manifestations. Herz 30(6):522–526

    PubMed  Google Scholar 

  85. Hufnagel G, Maisch B, Pfeiffer U (1987) Immunhistologic investigations in suspected cardiac sarcoidosis. Eur Heart J 8(Suppl. I):59–62

    Google Scholar 

  86. Maisch B, Selmayer N, Brugger E, Ertl G, Eilles C, Heinrich J, Gerhards W, Hufnagel G, Schmidt M, Kochsiek K (1987) Cardiac sarcoidosis—clinical and immunoserologic studies. Eur Heart J 8(Suppl. I):63–71

    Google Scholar 

  87. Schoppet M, Pankuweit S, Moll R, Baandrup U, Maisch B (2002) Images in cardiovascular medicine. Phenotype of infiltrating T lymphocytes in cardiac sarcoidosis. Circulation 105(12):e67–e68

    PubMed  Google Scholar 

  88. Schoppet M, Pankuweit S, Maisch B (2003) Cardiac sarcoidosis: cytokine patterns in the course of the disease. Arch Pathol Lab Med 127(9):1207–1210

    PubMed  Google Scholar 

  89. Cunningham MW (2000) Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 13:470–511

    PubMed  CAS  Google Scholar 

  90. Tontsch D, Pankuweit S, Maisch B (2000) Autoantibodies in the sera of patients with rheumatic heart disease: characterization of myocardial antigens by two-dimensional immunoblotting and N-terminal sequence analysis. Clin Exp Immunol 121(2):270–274

    PubMed  CAS  Google Scholar 

  91. Ellis NM, Li Y, Hildebrand W, Fischetti VA, Cunningham MW (2005) T cell mimicry and epitope specificity of cross-reactive T cell clones from rheumatic heart disease. J Immunol 175:5448–5456

    PubMed  CAS  Google Scholar 

  92. Faé KC, Diefenbach da Silva D, Bilate AM, Tanaka AC, Pomerantzeff PM, Kiss MH, Silva CA, Cunha-Neto E, Kalil J, Guilherme L (2008) PDIA3, HSPA5 and vimentin, proteins identified by 2-DE in the valvular tissue, are the target antigens of peripheral and heart infiltrating T cells from chronic rheumatic heart disease patients. J Autoimmun 31:136–141

    PubMed  Google Scholar 

  93. Special Writing Group of the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease of the Council of Cardiovascular Disease in the Young of the American Heart Association (1992) Guidelines for the diagnosis of rheumatic fever. Jones Criteria, 1992 update. JAMA 268(15):2069–2073

  94. Maisch B (2011) Cardiovascular disease in cancer patients—only the tip of the iceberg? Herz 4:287–289

    Google Scholar 

  95. Curigliano G, Mayer EL, Burstein HJ, Winer EP, Goldhirsch A (2010) Cardiac toxicity from systemic cancer therapy: a comprehensive review. Prog Cardiovasc Dis 53:94–104

    PubMed  CAS  Google Scholar 

  96. Shi A, Moon M, Dawood S, McManus B, Liu PP (2011) Mechanisms and management of doxorubicin cardiotoxicity. Herz 4:296–305

    Google Scholar 

  97. Wittig A, Engenhart-Cabillic R (2011) Cardiac side effects of conventional and particle radiotherapy in cancer patients. Herz 4:311–324

    Google Scholar 

  98. Schultheiss HP, Kühl U, Cooper LT (2011) The management of myocarditis. Eur Heart J 32:2616–2625

    PubMed  Google Scholar 

  99. Huber SA, Lodge PA (1986) Coxsackievirus B-3-myocarditis. Identification of different pathogenic mechanisms in DBA/2 and Balb/c mice. Am J Pathol 122:284–291

    PubMed  CAS  Google Scholar 

  100. Herzum M, Ruppert V, Kuytz B, Jomaa H, Nakamura I, Maisch B (1994) Coxsackievirus B3 infection leads to cell death of cardiac myocytes. J Mol Cell Cardiol 26(7):907–913

    PubMed  CAS  Google Scholar 

  101. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Honmg JS, Horwitz MS, Crowell RL, Finberg RW (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323

    PubMed  CAS  Google Scholar 

  102. Bergelson JM, Chan M, Solomon KR, St John NF, Lin H, Finberg RW (1994) Decay accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proc Natl Acad Sci USA 91:6245–6249

    PubMed  CAS  Google Scholar 

  103. Badorff C, Lee GH, Lamphear BJ et al (1999) Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med 5:320–326

    PubMed  CAS  Google Scholar 

  104. Fuse K, Chan G, Liu Y, Gudgeon P, Husain M, Chen M, Yeh WC, Akira S, Liu PP (2005) Myeloid differentiation factor-88 plays a crucial role in the pathogenesis of Coxsackievirus B3-induced myocarditis and influences type I interferon production. Circulation 112:2276–2285

    PubMed  CAS  Google Scholar 

  105. Fairwheather D, Rose NR (2007) Coxsackievirus-induced myocarditis in mice: a model of autoimmune disease for studying immunotoxicity. Methods 41:118–122

    Google Scholar 

  106. Frisancho-Kiss S, Davis SE, Nyland JF, Frisancho JA, Chilakova D, Barrett MA, Rose NR, Fairweather D (2007) Cutting edge: cross-regulation by TLR4 and T cell Ig mucin-3 determines sex differences in inflammatory heart disease. J Immunol 178:6710–6714

    PubMed  CAS  Google Scholar 

  107. Godeny EK, Gauntt CJ (1987) Murine natural killer cells limit coxsackievirus B3 replication. J Immunol 139:913–918

    PubMed  CAS  Google Scholar 

  108. Seko Y, Tsuchimochi H, Nakamura T, Okumura K, Naito S, Imataka K, Fujii J, Takaku F, Yazaki Y (1990) Expression of major histocompatibility complex class I antigen in murine ventricular myocytes infected with Coxsackievirus B3. Cir Res 67:360–367

    CAS  Google Scholar 

  109. Seko Y, Matsuda H, Kato K, Hashimoto Y, Yagita H, Okumura K, Yazaki Y (1993) Expression of intercellular adhesion molecule-1 in murine hearts with acute myocarditis caused by coxsackievirus B3. J Clin Invest 91:1327–1336

    PubMed  CAS  Google Scholar 

  110. Seko Y, Yagita H, Okumura K, Yazaki Y (1994) T-cell receptor V beta expression in infiltrating cells in murine hearts withs acute myocarditis caused by coxsackievirus B3. Circulation 89:2170–2175

    PubMed  CAS  Google Scholar 

  111. Huber SA, Feldman AM, Sartini D (2006) Coxsackievirus B3 induces T regulatory cells, which inhibit cardiomyopathy in tumor necrosis factor-alpha transgenic mice. Circ Res 99:1109–1116

    PubMed  CAS  Google Scholar 

  112. Li K, Xu W, Guo Q, Jiang Z, Wang P, Yue Y, Xiong S (2009) Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocardits. Circ Res 105:353–364

    PubMed  CAS  Google Scholar 

  113. Huber SA, Job LP (1983) Cellular immune mechanisms in Coxsackievirus group B, type 3 included myocarditis in BALB/C mice. Adv Exp Biol 161:491–508

    CAS  Google Scholar 

  114. Seko Y, Takahashi N, Ishiyama S, Nishikawa T, Kasajima T, Hiroe M, Suzuki S, Ishiwata S, Kawai S, Azumu M et al (1998) Expression of costimulatory molecules B7-1, B7-2, and CD40 in the heart of patients with acute myocarditis and dilated cardiomyopathy. Circulation 97:637–639

    PubMed  CAS  Google Scholar 

  115. Takata S, Nakamura H, Umemoto S, Yamaguchi K, Sekine T, Kato T, Nishioka K, Matsuzaki M (2004) Identification of autoantibodies with the corresponding antigen for repetitive coxsackievirus infection-induce cardiomyopathy. Circ J 68:677–682

    PubMed  CAS  Google Scholar 

  116. Latif N, Baker CS, Dunn MJ, Rose ML, Brady P, Yacoub MH (1993) Frequency and specifity of antiheart antibodies in patients with dilated cardiomyopathy detected using SDS-PAGE and western blotting. J Am Coll Cardiol 22:1378–1384

    PubMed  CAS  Google Scholar 

  117. Latif N, Zhang H, Archard LC, Yacoub MH, Dunn MJ (1999) Characterization of anti-heart antibodies in mice after infection with coxsackie B3 virus. Clin Immunol 91:90–98

    PubMed  CAS  Google Scholar 

  118. Young NS, Brown KE (2004) Mechanisms of disease. Parvovirus B19. N Engl J Med 350:586–597

    PubMed  CAS  Google Scholar 

  119. Saint-Martin I, Choulot JJ, Bonnau E, Morinet F (1990) Myocarditis caused by parvovirus. J Pediatr 116:1007–1008

    PubMed  CAS  Google Scholar 

  120. Nigro G, Bastianon V, Colloridl V et al (2000) Human parvovirus B19 infection in infancy associated with acute and chronic lymphocytic myocarditis and high cytokine levels: report of 3 cases and review. Clin Infect Dis 13:65–69

    Google Scholar 

  121. Schowengerdt KO, Ni J, Denfield SW et al (1997) Association of parvovirus B19 genome in children with myocarditis and cardiac allograft rejection: diagnosis using the polymerase chain reaction. Circulation 96:3549–3554

    PubMed  CAS  Google Scholar 

  122. Lamparter S, Schoppet M, Pankuweit S, Maisch B (2003) Acute parvovirus B19 infection associated with myocarditis in an immunocompetent adult. Hum Pathol 34(7):725–728

    PubMed  Google Scholar 

  123. Bock CT, Klingel K, Kandolf R (2010) Human parvovirus B19-associated myocarditis. N Engl J Med 362:213–214

    Google Scholar 

  124. Salahuddin SZ (1986) Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science 234(4776):596–601

    PubMed  CAS  Google Scholar 

  125. Krueger GRF, Ablashi DV (2003) Human herpesvirus-6: a short review of its biological behavior. Intervirology 46:257–269

    PubMed  Google Scholar 

  126. Buja LM (2006) HHV-6 in cardiovascular pathology. In: Krueger GRF, Ablashi DV (eds) Human Herpesvirus-6 (Chapter 18), 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  127. Fukae S, Ashizawa N, Morikawa S, Yano K (2000) A fatal fulminant myocarditis with human herpesvirus-6 infection. Intern Med 39:632–636

    PubMed  CAS  Google Scholar 

  128. De Ona M, Melon S, Rodriguez JL, Sanmartin JC, Bernardo MJ (2002) Association between human herpervirus type 6 and type 7, and cytomegalovirus disease in heart transplant recipients. Transpl Proc 34:75–76

    Google Scholar 

  129. Komaroff AL (2006) Is human herpesvirus-6 a trigger for chronic fatigue syndrome? J Clin Virol 37(Suppl. 1):S39–S46

    PubMed  CAS  Google Scholar 

  130. Schönian U, Crombach M, Maisch B (1993) Assessment of cytomegalovirus DNA and protein expression in patients with myocarditis. Clin Immol Immunopath 68:229–233

    Google Scholar 

  131. Schönian U, Crombach M, Maisch B (1991) Does CMV infection play a role in myocarditis? New aspects from in situ hybridization. Eur Heart J 12(Suppl. D):65–68

    PubMed  Google Scholar 

  132. Matsumori A, Yutani C, Ikeda Y, Kawai S, Sasayama S (2000) Hepatitis C virus from the hearts of patients with myocarditis and cardiomyopathy. Lab Invest 80(7):1137–1142

    PubMed  CAS  Google Scholar 

  133. Barbaro G, Di Lorenzo G, Soldini M, Giancaspro G, Grisorio B, Pellicelli A, Barbarini G (1999) Intensity of myocardial expression of inducible nitric oxide synthase influences the clinical course of human immunodeficiency virus-associated cardiomyopathy. Gruppo Italiano per lo Studio Cardiologico dei pazienti affetti da AIDS (GISCA). Circulation 100(9):933–939

    PubMed  CAS  Google Scholar 

  134. Liebermann EB, Hutchin GM, Herskowitz A et al (1991) Clinico-pathologic description of myocarditis. J Am Coll Cardiol 18:1617–1626

    Google Scholar 

  135. Friedrich MG, Sechtem U, Schulz-Menger J et al (2009) For the international consensus group on cardiovascular magnetic resonance in myocarditis. Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol 53:1475–1487

    PubMed  Google Scholar 

  136. Maisch B, Alter P, Romminger M, Moll R, Baandrup U, Pankuweit S (2011) MRI or EMB for the diagnosis of myocarditis and viral heart disease EHJ suppl (Abstract supplement of the ESC Congress)

  137. Mahrholdt H, Goedecke C, Wagner A et al (2004) Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation 109:1250–1258

    PubMed  Google Scholar 

  138. Maisch B, Seferovic PM, Ristic AD et al (2004) Task force on the diagnosis and management of pericardial diseases of the European society of cardiology. Guidelines on the diagnosis and management of pericardial diseases executive summary; The Task force on the diagnosis and management of pericardial diseases of the European Society of Cardiology. Eur Heart J 25(7):587–610

    PubMed  Google Scholar 

  139. Maisch B, Ristic AD, Seferovic PM, Tsang TSM (2011) Interventional Pericardiology- Pericardiocentesis, pericardioscopy, pericardial biopsy, balloon pericardiotomy and intrapericardial therapy. Springer, Heidelberg

    Google Scholar 

  140. Horowitz MDS, Schultz CS, Stinson EB et al (1974) Sensitivity and specificity of echocardiographic diagnosis of pericardial effusion. Circulation 50:239–245

    PubMed  CAS  Google Scholar 

  141. Baughman KL (2006) Diagnosis of myocarditis: death of Dallas criteria. Circulation 113:593–595

    PubMed  Google Scholar 

  142. Maisch B, Hufnagel G, Schönian U, Hengstenberg C (1995) The European study of epidemiology and treatment of cardiac inflammatory disease (ESETCID). Eur Heart J 16:173–175

    PubMed  Google Scholar 

  143. Burch GE (1972) Prolonged bed rest in the management of patients with cardiomyopathy. Cardiovasc Clin 4:376–387

    Google Scholar 

  144. Burch GE, McDonald CD (1971) Prolonged bed rest in the treatment of ischemic cardiomyopathy. Chest 60:424–430

    PubMed  CAS  Google Scholar 

  145. Hunt SA, American College of Cardiology, American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation, Management of Heart Failure) (2005) ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). JACC 46(6):e1–e82

  146. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, Jessup M, Konstam MA, Mancini DM, Michl K, Oates JA, Rahko PS, Silver MA, Stevenson LW, Yancy CM (2009) 2009 Fucussed update incorporated into the ACC/AHA 2005 Guidelines for the diagnosis and management of heart failure in adults. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in collaboration with the International Society for Heart and Lung Transplantation. J Am Coll Cardiol 53:e31–e90

    Google Scholar 

  147. Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJ, Ponikowski P, Poole-Wilson PA, Stromberg A, van Veldhuisen DJ, Atar D, Howes AW, Keren A, Mebazaa A, Nieminen M, Priori SG, Swedberg K, Vahanian A, Camm J, De Caterina R, Dean V, Funck-Brentano C, Hellermans I, Krsitensen SD, McGregor K, Sechtem U, Silber S, Tendera M, Widimsky P, Zamorano JL (2008) ESC Guidelines for the eidagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC(HFA) and endorsed by the European Society of Intensiv Cardiac Care Medicine (ESICM). Eur Heart J 29:2388–2442

    Google Scholar 

  148. Packer M (1992) The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol 20:248–254

    PubMed  CAS  Google Scholar 

  149. CONSENSUS Trial Study Group (1987) Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril-Survival Study (CONSENSUS). N Engl J Med 316:1429–1435

    Google Scholar 

  150. Pfeffer MA, Braunwald E, Moye LA et al (1992) Effect of captopril on mortality and morbidity in patients with lef ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. N Engl J Med 327:669–677

    PubMed  CAS  Google Scholar 

  151. SOLVD Investigators (1992) Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 327:685–691

    Google Scholar 

  152. Packer M, Poole-Wilson PA, Armstrong PW et al (1999) Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. ATLAS Study Group. Circulation 100:2312–2318

    PubMed  CAS  Google Scholar 

  153. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G (2000) Effects of an angiotensin-converting enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study (HOPE) investigators. N Engl J Med 342:145–153

    PubMed  CAS  Google Scholar 

  154. Pfeffer MA, Swedberg K, Granger CB et al (2003) Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall program. Lancet 362:759–766

    PubMed  CAS  Google Scholar 

  155. Yusuf S, Pfeffer MA, Swedberg K et al (2003) Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet 362:777–781

    PubMed  CAS  Google Scholar 

  156. Pitt B, Poole-Wilson PA, Segal R et al (2000) Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomized trial. The Losartan heart failure survaival study ELITE II. Lancet 355:1582–1587

    PubMed  CAS  Google Scholar 

  157. Rezkalla SH, Raikar S, Kloner RA (1996) Treatment of viral myocarditis with focus on captopril. Am J Cardiol 77:634–637

    PubMed  CAS  Google Scholar 

  158. Saegusa S, Fei Y, Takahashi T, Sumino H, Moriya J, Kawaura K, Ymakawa J, Itoh T, Morimotio S, Nakahshi T, Iwai K, Matsumoto M, Kanda T (2007) Oral administration of candesartan improves the survival of mice with viral myocarditis through modification of cardiac adiponectin expression. Cardiovasc Drugs Ther 21:155–160

    PubMed  CAS  Google Scholar 

  159. Weber KT, Brilla CG (1991) Pathogical hypertrophy and cardiac insterstitium. Fibrosis and rennin-angiotensin-aldosterone system. Circulation 83:1849–1865

    PubMed  CAS  Google Scholar 

  160. Maisch B, Rupp H (2006) Myocardial fibrosis: a cardiopathophysiologic Janus head. Herz 31(3):260–268

    PubMed  Google Scholar 

  161. Waagstein F, Hjalmarson A, Varnauskas E, Walentin L (1975) Effect of beta-adrenergic receptor blockade in congestive cardiomyoapthy. Br Heart J 37:1022–1036

    PubMed  CAS  Google Scholar 

  162. Swedberg K, Hjalmarson A, Waagstein F, Wallentin I (1980) Adverse effects of beta-blockade withdrawal in patients with congestive cardiomyopathy. Br Heart J 44:134–142

    PubMed  CAS  Google Scholar 

  163. MERIT-HF Study Group (1999) Effect of metoprolo CR/XL in chronic heart failure. Metprolol CR/XL Randomized Intervention Trial in Congestive Heart Failure (MERIT-HF). Lanceat 353:2001–2007

    Google Scholar 

  164. CIBIS-II Investigators and Committee (1999) The cardiac insufficiency bisoprolol study II (CIBIS-II): a radomised trial. Lancet 353:9–13

    Google Scholar 

  165. Packer M, Coats AJ, Fowler MB et al (2001) Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med 344:1651–1658

    PubMed  CAS  Google Scholar 

  166. Pitt B, Zannad F, Remme WJ et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 341:709–717

    PubMed  CAS  Google Scholar 

  167. Pitt B, Remme W, Zannad F et al (2003) Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 348:1309–1321

    PubMed  CAS  Google Scholar 

  168. Swedberg K, Komjada M, Böhm M, Borer JS, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L, on behalf of the SHIFT Investigators (2010) Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 376:875–885

    Google Scholar 

  169. Digitalis Investigation Group (1997) The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med 336:525–533

    Google Scholar 

  170. Costanzo-Nordin MR, Reap EA, Robinson JA, Scanlon PJ (1985) A nonsteroid anti-inflammatory drug exacerbates Coxsackie B3 murine myocarditis. J Am Coll Cardiol 6:1078–1082

    PubMed  CAS  Google Scholar 

  171. Cardiac Arrhythmia Suppression Trial (1989) Increase mortality due to encainide or flecainide in a randomized trial of arrhythmia suppression after myocardial infarction. N Engl J Med 321:406–412

    Google Scholar 

  172. Amiodarone Trials Meta-Analysis Investigators (1997) Effect of prophylactic amiodarone on mortality after acute myocardial infarction and in congestive heart failure: meta-analysis of individual data from 6500 patients in randomized trials. Lancet 350:1417–1424

    Google Scholar 

  173. Bardy GH, Lee KL, Mark DB et al (2005) Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 352:225–237

    PubMed  CAS  Google Scholar 

  174. Hohenloser SH, Kuck KH, for the PIAF Investigators (2000) Rhythm or rate control in atrial fibrillation: pharmacological Intervention in Atrial Fibrillation(PIAF). A randomized trial. Lancet 356:1789–1794

    Google Scholar 

  175. Carlsson J, Miketic S, Windeler J et al (2003) Randomized trial of rate-control versus rhythm-control in persistent atrial fibrillation. The strategies of treatment of atrial fibrillation (STAF) study. J Am Coll Cardiol 41:1690–1696

    PubMed  Google Scholar 

  176. Van Gelder IC, Hagens VE, Bosker HA et al (2002) Rate control versus electrical cardioversion for persistent atrial fibrillation study group. A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. N Engl J Med 347:1834–1840

    PubMed  Google Scholar 

  177. Wyse DG, Waldo AL, DiMarco JP et al (2002) For the Atrial Follow-Up Investigation of Rhythm Management (AFFIRM) Investigators. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med 347:1825–1833

    PubMed  CAS  Google Scholar 

  178. Grimm W, Christ M, Bach J, Muller HH, Maisch B (2003) Noninvasive arrhythmia risk stratification in idiopathic dilated cardiomyopathy: results of the Marburg Cardiomyopathy Study. Circulation 108(23):2883–2891

    PubMed  Google Scholar 

  179. Grimm W, Alter P, Maisch B (2004) Arrhythmia risk stratification with regard to prophylactic implantable defibrillator therapy in patients with dilated cardiomyopathy. Results of MACAS, DEFINITE, and SCD-HeFT. Herz 29(3):348–352

    PubMed  Google Scholar 

  180. Kadish A, Dyer A, Daubert JP, Quigg R, Estes M (2005) Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyoapthy. N Engl J Med 350:2151–2158

    Google Scholar 

  181. Higgins SL, Hummel JD, Niazi IK et al (2003) Cardiac resynchronization therapy for the treatment of heart failure in patients with intraventricular conduction delay and malignant ventricular tachyarrhythmias. J Am Coll Cardiol 42:1454–1459

    PubMed  Google Scholar 

  182. Bristow MR, Saxon LA, Boehmer J et al (2004) Cardiac resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 350:2140–2150 (COMPANION)

    PubMed  CAS  Google Scholar 

  183. Linde C, Leclercq C, Rex S et al (2002) Long-term benefits of biventricular pacing in congestive heart failure: results from the MUltisite STimulation In Cardiomyopathy(MUSTIC) study. J Am Coll Cardiol 40:111–118

    PubMed  Google Scholar 

  184. St John Sutton MG, Plappert T, Abraham WT et al (2003) Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation 107:1985–1990

    PubMed  Google Scholar 

  185. Strauer BE, Brehm M, Zeus T, Gattermann N, Hernandez A, Sorg RV, Kögler G, Wernet P (2001) Intrakoronare, humane autologe Stammzelltransplantation zur Myokard-Regeneration nach Herzinfarkt [Myocardial regeneration after intracoronary transplantation of human autologous stem cells following acute myocardial infarction]. Dtsch Med Wschr 126:932–938

    PubMed  CAS  Google Scholar 

  186. Seth S, Narang R, Bhargava B et al (2006) for the AIIMS Cardiovascular Stem Cell Study Group. Percutaneous intracoronary cellular cardiomyoblasty for non-ischemic cardiomyopathy. Clinical and histopathological results. The first-in-man ABCD (Autologous Bone marrow Cells in Dilated cardiomyopathy) trial. J Am Coll Cardiol 48:2350–2351

    PubMed  Google Scholar 

  187. Schannwell CM, Köstering M, Zeus T, Brehm M, Erdmann G, Fleissner T, Yousef M, Kögler G, Wernet P, Strauer BE (2008) Humane autologe intrakoronare Stammzelltransplantation zur Myokardregeneration bei dilatativer Kardiomyopathie(NYHA Stadium II bis III) [Autologous bone marrow cells in dilated cardiomyoapthy trial, Düsseldorfer ABCD Study)]. J Kardiol 15:23–30

    Google Scholar 

  188. Maisch B, Hufnagel G, Kölsch S et al (2004) Treatment of inflammatory dilated cardiomyopathy and myocarditis with immunosuppression and i.v. immunoglobulins. Herz 29:624–636

    PubMed  Google Scholar 

  189. Maisch B, Richter A, Koelsch S et al (2006) Management of patients with suspected (peri-)myocarditis and inflammatory dilated cardiomyopathy. Herz 31(9):881–890

    PubMed  Google Scholar 

  190. Saltykow S (1905) Über diffuse Myokarditis. Virchows Archiv für Pathologische Anatomie 182:1–39

    Google Scholar 

  191. Ren H, Poston RS, Hruban RH et al (1993) Long survival with giant cell myocarditis. Mod Pathol 6:402–407

    PubMed  CAS  Google Scholar 

  192. Frustaci A, Chimenti C, Peironi M et al (2000) Giant cell myocarditis responding to immunosuppressive therapy. Chest 117:905–907

    PubMed  CAS  Google Scholar 

  193. Cooper LT, Berry GJ, Shabetai R (1997) Idiopathic giant cell myocarditis. Natural history and treatment. N Engl J Med 336:1860–1866

    PubMed  Google Scholar 

  194. Cooper L, Okura Y (2001) Idiopathic giant cell myocarditis. Current treatment options. Cardiovasc Med 3:463–467

    Google Scholar 

  195. Okada R, Wakafuji S (1985) Myocarditis in autopsy. Heart Vessels Suppl 1:23–29

    PubMed  CAS  Google Scholar 

  196. Kodama M, Matsumoto Y, Fujiwara M et al (1990) A novel experimental model of giant cell myocarditis induced in rats by immunization with cardiac myosin fraction. Clin Immunol Immunopathol 57:250–262

    PubMed  CAS  Google Scholar 

  197. Kodama M, Hanawa H, Saeki M et al (1994) Rat dilated cardiomyopathy after autoimmune giant cell myocarditis. Circ Res 75:278–284

    PubMed  CAS  Google Scholar 

  198. Okura Y, Yamamoto T, Goto S et al (1997) Characterization of cytokine and iNOS mRNA expression in situ during the course of experimental autoimmune myocarditis in rats. J Mol Cell Cardiol 29:491–502

    PubMed  CAS  Google Scholar 

  199. Izumi T, Takehana H, Kohno K, Nishii M, Takeuchi I, Nakano H, Koitabashi T, Inomata T (2003) Myosin autoreactive T cells and autoimmune myocarditis. Lessons from the disease caused by cardiac myosin peptide CM2. In: Matsumori A (ed) Cardiomyopathies and Heart Failure. Kluwer, Dordrecht, pp 59–65

    Google Scholar 

  200. Cooper LT, Berry GHJ, Shabetai R (1997) Giant cell myocarditis: distinctions from lymphocytic myocarditis and cardiac sarcoidosis. J Heart Fail 4:227–230

    Google Scholar 

  201. Costanzo-Nordin M, Silver M, O’Connell J et al (1987) Giant cell myocarditis: dramatic hemodynamic and histologic improvement with immunosuppressive therapy. Eur Heart J Suppl. I:271–274

    Google Scholar 

  202. Desjardins V, Pelletier G, Leung TK et al (1992) Successful treatment of severe heart failure caused by idiopathic giant cell myocarditis. Can J Cardiol 8:788–792

    PubMed  CAS  Google Scholar 

  203. Nash C, Panaccione R, Sutherland L et al (2001) Giant cell myocarditis in a patient with Crohn’s disease, treated with Etanercept-a tumor necrosis factor-alpha antagonist. Can J Gastroenterol 15:607–611

    PubMed  CAS  Google Scholar 

  204. Brilakis E, Olson LJ, Daly RC et al (1999) Role of ventricular assist device support as a bridge to transplantation in giant cell myocarditis. J Heart Lung Transp 18:31

    Google Scholar 

  205. Grant SC (1993) Recurrent giant cell myocarditis after transplantation. J Heart Lung Transpl 12:155–156

    CAS  Google Scholar 

  206. Scott R, Ratliff N, Starling R et al (2001) Recurrence of giant cell myocarditis in cardiac allograft. J Heart Lung Transpl 20:375–380

    CAS  Google Scholar 

  207. Cooper LT, Berry GJ, Tazelaar H et al (1998) A comparison of post-transplantation survival in giant cell myocarditis and cardiomyopathy patients. J Am Coll Cardiol 29:251A

    Google Scholar 

  208. Okura Y, Dec GW, Hare JM, Kodama M, Berry GJ, Tazelaar HD, Bailey KR, Cooper LT (2003) A clinical and histopathologic comparison of cardiac sarcoidosis and idiopathic giant cell myocarditis. J Am Coll Cardiol 41:322–328

    PubMed  Google Scholar 

  209. Hufnagel G, Maisch B (1987) Pfeiffer U (1987) Immunhistologic investigations in suspected cardiac sarcoidosis. Eur Heart J 8(Suppl. I):59–62

    Google Scholar 

  210. Sekiguchi M, Numao Y, Imai M et al (1980) Clinical and histopathological profile of sarcoidosis of the heart and acute idiopathic myocarditis. Concepts through a study employing endomyocardial biopsy. I. Sarcoidosis. Jpn Circ J 44:249–263

    PubMed  CAS  Google Scholar 

  211. Schoppet M, Pankuweit S, Moll R, Baandrup U, Maisch B (2002) Images in cardiovascular medicine. Phenotype of infiltrating T lymphocytes in cardiac sarcoidosis. Circulation 105(12):e67–e68

    PubMed  Google Scholar 

  212. Schoppet M, Pankuweit S, Maisch B (2003) Cardiac sarcoidosis. Cytokine patterns in the course of the disease. Arch Pathol Lab Med 127:1207–1210

    PubMed  Google Scholar 

  213. Valentonye R, Hampe J, Huse K, Rosenstiel P, Albrecht M, Stenzel A, Nagy M, Gaede KI, Franke A, Haesler R, Koch A, Lengauer T, Seegert D, Reiling N, Ehlers S, Schwinger E, Platzer M, Krawczak M, Müller-Quernheim J, Schürmann M, Schreiber S (2005) Sarcoidosis is associated with a truncating splice mutant in BTNL2. Nat Genet 37:357–364

    Google Scholar 

  214. Meyer T, Lauschke J, Ruppert V, Richter A, Pankuweit S, Maisch B (2008) Isolated cardiac sarcoidosis associated with the expression of a splice variant coding for a truncated BTNL2 protein. Cardiology 109(2):117–121

    PubMed  Google Scholar 

  215. Ardehali H, Howard DL, Hariri A, Qasim A, Hare JM, Baughman KL, Kasper EK (2005) A positive endomyocardial biopsy result for sarcoid is associated with poor prognosis in patients with initially unexplained cardiomyopathy. Am Heart J 150:459–463

    PubMed  Google Scholar 

  216. Bargout R, Kelly RF (2004) Sarcoid heart disease. Clinical course and treatment. Int J Cardiol 97:173–182

    PubMed  Google Scholar 

  217. Löffler W (1936) Endocarditis parietalis fibroplastica mit Bluteosinophilie. Ein eigenartiges Krankheitsbild. Schweizerische medizinische Wochenschrift, Basel, 66:817–820

  218. Oakley CM, Olsen GJ (1977) Eosinophilia and heart disease. Br Heart J 39(3):233–237

    PubMed  CAS  Google Scholar 

  219. Olsen EG, Spry CJ (1985) Relation between eosinophilia and endomyocardial disease. Prog Cardiovasc Dis 27(4):241–254

    PubMed  CAS  Google Scholar 

  220. Parrillo JE (1990) Heart disease and the eosinophil. N Engl J Med 323(22):1560–1561

    PubMed  CAS  Google Scholar 

  221. Parrillo JE, Borer JS, Henry WL et al (1979) The cardiovascular manifestations of the hypereosinophilic syndrome. Am J Med 67:572–582

    PubMed  CAS  Google Scholar 

  222. Fauci AS, Harley JB, Roberts WC et al (1982) NIH conference. The idiopathic hypereosinophilic syndrome. Clinical, pathophysiologic, and therapeutic considerations. Ann Intern Med 97(1):78–92

    PubMed  CAS  Google Scholar 

  223. Gotlib J (2011) World Health Organization-defined eosinophilic disorders: 2011 update on diagnosis, risk stratification, and management. Am J Hematol 86(8):677–688

    PubMed  Google Scholar 

  224. Maisch B, Baandrup U, Moll R, Pankuweit S (2009) Eosinophilic carditis is rare but not to be overlooked, EHJ Suppl XX, Abstract

  225. Gleich GJ, Frigas E, Loegering DA et al (1979) Cytotoxic properties of the eosinophil major basic protein. J Immunol 123(6):2925–2927

    PubMed  CAS  Google Scholar 

  226. Tai PC, Ackerman SJ, Spry CJ et al (1987) Deposits of eosinophil granule proteins in cardiac tissues of patients with eosinophilic endomyocardial disease. Lancet 1(8534):643–647

    PubMed  CAS  Google Scholar 

  227. Spry CJ, Tai PC, Davies J (1983) The cardiotoxicity of eosinophils. Postgrad Med J 59(689):147–153

    PubMed  CAS  Google Scholar 

  228. Slungaard A, Vercellotti GM, Tran T et al (1993) Eosinophil cationic granule proteins impair thrombomodulin function. A potential mechanism for thromboembolism in hypereosinophilic heart disease. J Clin Invest 91(4):1721–1730

    PubMed  CAS  Google Scholar 

  229. Ohnishi T, Kita H, Weiler D et al (1993) IL-5 is the predominant eosinophil-active cytokine in the antigen- induced pulmonary late-phase reaction. Am Rev Respir Dis 147(4):901–907

    PubMed  CAS  Google Scholar 

  230. Ommen S, Seward J, Tajik A (2000) Clinical and echocardiographic features of hypereosinophilic syndromes. Am J Cardiol 86:110–113

    PubMed  CAS  Google Scholar 

  231. Shah R, Ananthasubramaniam K (2006) Evaluation of cardiac involvement in hypereosinophilic syndrome: complementary roles of transthoracic, transesophageal, and contrast echocardiography. Echocardiography 23:689–691

    PubMed  Google Scholar 

  232. Del Bene MR, Cappelli F, Rega L, Venditti F, Barletta G (2011) Characterization of Loeffler Eosinophilic Myocarditis by means of real time three-dimensional contrast-enhanced echocardiography. Echocardiography 19(3):E62–E66

    Google Scholar 

  233. Syed IS, Martinez MW, Feng DL et al (2008) Cardiac magnetic resonance imaging of eosinophilic endomyocardial disease. Int J Cardiol 126:e50–e52

    PubMed  Google Scholar 

  234. Kleinfeldt T, Ince H, Nienaber CA (2011) Hypereosinophilic syndrome: a rare case of Loeffler’s endocarditis documented in cardiac MRI. Int J Cardiol 149(1):e30–e32

    PubMed  Google Scholar 

  235. Paydar A, Ordovas KG, Reddy GP (2008) Magnetic resonance imaging for endomyocardial fibrosis. Pediatr Cardiol 29(5):1004–1005

    PubMed  Google Scholar 

  236. Deb K, Djavidani B, Luchner A et al (2008) Time course of eosinophilic myocarditis visualized by CMR. J Cardiovasc Magn Reson 10(1):21–25

    Google Scholar 

  237. Uetsuka Y, Kasahara S, Tanaka N et al (1990) Hemodynamic and scintigraphic improvement after steroid therapy in a case with acute eosinophilic heart disease. Heart Vessels Suppl 5:8–12

    PubMed  CAS  Google Scholar 

  238. Butterfield JH, Gleich GJ (1994) Interferon-alpha treatment of six patients with the idiopathic hypereosinophilic syndrome. Ann Intern Med 121(9):648–653

    PubMed  CAS  Google Scholar 

  239. Metzgeroth G, Walz C, Reiter A et al (2008) Safety and efficacy of imatinib in chronic eosinophilic leukaemia and hypereosinophilic syndrome—a phase-II study. Br J Haematol 143(5):707–715

    PubMed  CAS  Google Scholar 

  240. Abonia JP, Putnam PE (2011) Mepolizumab in eosinophilic disorders. Expert Rev Clin Immunol 7(4):411–417

    PubMed  CAS  Google Scholar 

  241. Garrett JK, Jameson SC, Thomson B, Collins MH, Wagoner LE, Freese DK et al (2004) Anti-interleukin-5 (mepolizumab) therapy for hypereosinophilic syndromes. J Allergy Clin Immunol 113(1):115–119

    PubMed  CAS  Google Scholar 

  242. Rothenberg M, Klion A, Gleich G et al (2008) Treatment of patients with the hypereosinophilic syndrome with mepolizumab. N Engl J Med 358(12):1215–1228

    PubMed  CAS  Google Scholar 

  243. Edwards WD, Holmes DR, Reeder GS (1982) Diagnosis of active lymphocytic myocarditis by endomyocardial biopsy. Quantitative criteria for light microscopy. Mayo Clin Proc 57:419–425

    PubMed  CAS  Google Scholar 

  244. Fenoglio JJ, Ursell PC, Kellogg CF, Drusin RE, Weiss MB (1983) Diagnosis and classification of myocarditis by endomyocardial biopsy. N Engl J Med 308:12–18

    PubMed  Google Scholar 

  245. Dec quoted in Batra AS, Lewis AB (2001) Acute myocarditis. Curr Opin Pediatr 13:234–239 and in (186)

  246. Hosenpud JD, McAnulty JH, Niles NR (1985) Lack of objective improvement in ventricular systolic function in patients with myocarditis treated with azathioprine and prednisone. J Am Coll Cardiol 6:217–222

    Google Scholar 

  247. Anderson quoted in Maisch B, Herzum M, Schoenian U (1993) Immunomodulating factors and immunosuppressive drugs in the therapy of myocarditis. Scand J Infect Dis Suppl 88:149–62. (=41) and in (187)

  248. Marboe CC, Fenoglio JJ Jr (1988) Pathology and natural history of human myocarditis. Pathol Immunopathol Res 7:226–239

    PubMed  CAS  Google Scholar 

  249. Latham RD, Mulrow JP, Virmani R et al (1989) Recently diagnosed idiopathic dilated cardiomyopathy: incidence of myocarditis and efficacy of prednisone therapy. Am Heart J 117:876–882

    PubMed  CAS  Google Scholar 

  250. Maisch B, Schoenian U, Hengstenberg C, Herzum M, Hufnagel G, Bethge C, Bittinger A, Neumann K (1994) Immunosuppressive therapy in autoreactive myocarditis: results from a controlled trial. Postgrad Med J 70(Suppl. 1):S29–S34

    PubMed  Google Scholar 

  251. Kühl U, Strauer BE, Schultheiss H-P (1994) Methylprednisolone in chronic myocarditis. Postgrad Med J 70(Suppl. 1):S35–S42

    Google Scholar 

  252. Camargo PR, Snitcowsky R, da Luz PL, Mazzieri R, Higuchi ML, Rati M et al (1995) Favourable effects of immunosuppressive therapy in children with dilated cardiomyopathy and active myocarditis. Pediatr Cardiol 16:61–68

    PubMed  CAS  Google Scholar 

  253. Dezue Liu (2002) Observation of integrated Chinese traditional and Western medicine on acute viral myocarditis. Xian Dai Zhong Xi Yi Jie He Za Zhi 11:481–482

    Google Scholar 

  254. Dezue Liu, Lei Yang, Haixia Jiang (2003) Clinical search of Sheng Mai Injection combined with corticosteroids for acute viral myocarditis in children. J Sichuan Tradit Chin Med 21:59–60

    Google Scholar 

  255. Dabao Sun (1999) Corticosteroid treatment effects in 36 cases diagnose with viral myocarditis with ventricle premature beats. J Zhenjiang Med Coll 9:211

    Google Scholar 

  256. Yo-zang Wu, Bing-wang Chen (1999) Observation on curative effects of astragalus injection combined with glucocorticoids on acutely severe viral myocarditis. Zhongguo Zhong Xe Yi Jie He Ji Jui Za Zhi 6:350–3521999

    Google Scholar 

  257. Qing-fu Kong, Shu-zhi Song, Xue-ying Xie, Xin-hua Zhang, Ge-jie Yue, Zhao-li Chen (2001) Clinical study on therapeutic effects of treatment according to syndrome differentiation of traditional chinese medicine combined with captopril on severe viral myocarditis complicated heart failure. Zhongguo Zhong Xi Yi Jie He Za Zhi 21:513–515

    Google Scholar 

  258. Frustaci A, Calabrese F, Chimenti C, Pieroni M, Thiene G, Maseri A (2003) Immunosuppressive therapy for active lymphocytic myocarditis: virological and immunologic profile for responders versus nonresponders. Circulation 107:857–863

    PubMed  Google Scholar 

  259. Parillo JE, Cunnion RE, Epstein SE, Parker MM, Suffredini AF, Brenner M, Schaer GL, Palmeri S, Alling D, Wittes J, Ferrans VJ, Rodriguez AR, Fauci AS (1989) A prospective, randomized, controlled trial of prednisone for dilated cardiomyopathy. N Engl J Med 321:1061–1068

    Google Scholar 

  260. Mason JW, O’Connel JB, Hershkowitz A, Rose NR, McManus BM, Billingham ME et al (1995) A clinical trial of immunosuppressive therapy for myocarditis. The Myocarditis Treatment Trial Investigators. N Engl J Med 33:269–275

    Google Scholar 

  261. Brown CA, O’Connel JB (1996) Implications of the myocarditis treatment trial for clinical practice. Curr Opin Cardiol 11:332–336

    PubMed  CAS  Google Scholar 

  262. Maisch B, Camerini F, Schultheiss H-P (1955) Immunosuppressive therapy for myocarditis (letter). N Engl J Med 333:1713

    Google Scholar 

  263. Wojnicz R, Nowalany-Koziolaska E, Wojciechowska C et al (2001) Randomized, placebo-controlled study for immunosuppressive treatment of inflammatory dilated cardiomyopathy. Two-year follow-up results. Circulation 104:39–45

    PubMed  CAS  Google Scholar 

  264. Frustaci A, Russo MA, Chimenti C (2009) Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study. Eur Heart J 30:1995–2002

    PubMed  CAS  Google Scholar 

  265. Maisch B, Kölsch S, Hufnagel G, Funck RC, Ruppert V, Pankuweit S for the ESETCID Investigators, Orlando 2011, AHA Congress, Abstract

  266. Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV (2008) Recapitulation of IVIG anti-inflammatory activity with a recombinant Ig Fc. Science 320:373–376

    PubMed  CAS  Google Scholar 

  267. Ballow M (1997) Mechanisms of actin of intrvenous immune serum globulin in autoimmune and inflammatory diseases. J Allergy Clin Immunol 100:151–157

    PubMed  CAS  Google Scholar 

  268. Dalakas MC (2004) Intravenous immunoglobulin in autoimmune neuromuscular disease. JAMA 291:2367–2375

    PubMed  CAS  Google Scholar 

  269. Nimmerjahn F, Ravetsch JV (2008) Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol 26:513–533

    PubMed  CAS  Google Scholar 

  270. Kzatchkine MD, Kaveri SV (2001) Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med 345:747–755

    Google Scholar 

  271. Rosen FS (1993) Putative mechanisms oft he effect of intravenous gamma-globulin. Clin Immunol Immunopathol 67:S41–S43

    PubMed  CAS  Google Scholar 

  272. Mobini N, Sarela A, Ahmed AR (1995) Intravenous immunoglobulins in the therapy of autoimmune and systemic inflammatory disorders. Ann Allergy Asthma Immunol 74:119–128

    PubMed  CAS  Google Scholar 

  273. Gold R, Stangel M, Dalakas MC (2007) Drug insight: the use of intravenous immunoglobulin in neurology-therapeutic considerations and practical issues. Nat Clin Pract Neurol 3:36–44

    PubMed  CAS  Google Scholar 

  274. Selbing A, Josefsson A, Dahle LO, Lindgren R (1995) Parvovirus B19 infection during pregnancy treated with high-dose intravenous gammaglobulin. Lancet 345:660–661

    PubMed  CAS  Google Scholar 

  275. Gullestad L, Aass H, Fjeld JG, Wikeby L, Andreassen AK, Ihlen H, Simonsen S, Kjekshus J, Nitter-Hauge S, Ueland T, Lien E, Froland SS, Aukrust P (2001) Immunomodulating therapy with intravenous immunoglobulin in patients with chronic heart failure. Circulation 103:220–225

    PubMed  CAS  Google Scholar 

  276. Aukrust P, Yndestad A, Ueland T, Damås JK, Frøland SS, Gullestad L (2006) The role of intravenous immunoglobulin in the treatment of chronic heart failure. Int J Cardiol 112(1):40–45

    PubMed  Google Scholar 

  277. Udi N, Yehuda S (2008) Intravenous immunoglobulin—indications and mechanisms in cardiovascular diseases. Autoimmun Rev 7(6):445–452

    PubMed  CAS  Google Scholar 

  278. Walpen AJ, Laumonier T, Aebi C, Mohacsi PJ, Rieben R (2004) IgM enriched intravenous immunoglobulin inhibits classical pathway complement activation, but not bacterial killing by human serum. Xenotransplantation 11(2):141–148

    PubMed  Google Scholar 

  279. Kishimoto C, Fujita M, Kinoshita M, Iwase T, Fujii B, Murashige A et al (1999) Immunglobulin therapy for myocarditis an acute dilated cardiomyopathy. Circulation 100(18):1405

    Google Scholar 

  280. Kishimoto C, Shioji K, Kinoshita M, Iwase T, Tamaki S, Jujii M, Murashige A, Maruhashi H, Takeda S, Nonogi H, Hashimoto T (2003) Treatment of acute inflammatory cardiomyopathy with intravenous immunoglobulin ameliorates left ventricular function associated with suppression of inflammatory cytokines and decreased oxidative stress. Int J Cardiol 91:173–178

    PubMed  Google Scholar 

  281. Robinson J, Hartling L, Crumley E, Vandermeer B, Klassen TP (2005) A systematic review of intravenous gamma globulin for the therapy of acute myocarditis. BMC Cardiovasc Disord 5:12–18

    PubMed  Google Scholar 

  282. Bozkurt B, Villaneuva FS, Holubkov R, Tokarczyk T, Alvarez RJ, MacGowan GA, Murali S, Rosenblum WD, Feldman AM, McNamara DM (1999) Intravenous immune globulin in the therapy of peripartum cardiomyopathy. J Am Coll Cardiol 34:177–180

    PubMed  CAS  Google Scholar 

  283. Takeda Y, Yasuda S, Miyazaki S et al (1998) High-dose immunoglobulin G therapy for fulminant myocarditis. Jap Circ J 62:871–872

    PubMed  CAS  Google Scholar 

  284. Goland S, Czer LSC, Siegel RJ, Tabak S, Jordan S, Luthringer D, Mirocha J, Coleman B, Kass RM, Trento A (2008) Intravenous immunoglobulin treatment for acute fulminant inflammatory cardiomyopathy: series of sixpatients and review of literature. Can J Cardiol 24(7):571–574

    PubMed  CAS  Google Scholar 

  285. Drucker NA, Colan SD, Lewis AB et al (1994) Gamma-globulin treatment of acute myocarditis in the pediatric population. Circulation 89:252–257

    PubMed  CAS  Google Scholar 

  286. McNamara DM, Rosenblum WD, Janosko KM et al (1997) Intravenous immune gobulin in the therapy of myocarditis and acute cardiomyopathy. Circulation 95:2476–2478

    PubMed  CAS  Google Scholar 

  287. McNamara DM, Holubkov R, Starling RC, Dec W, Loh E, Torre-Amione G, Gass A, Janosko K, Tokarczyk T, Kessler P, Mann DL (2001) for the Intervention in Myocarditis and Acute Cardiomyopathy (IMAC) Investigators. Controlled trial of intravenous immune globuline in recent-onset dilated cardiomyopathy. Circulation 103:2254–2259

    PubMed  CAS  Google Scholar 

  288. Shioji K, Matsuura Y, Iwase T et al (2002) Successful immunoglobulin treatment for fulminant myocarditis and serial analysis of serum thiredoxin—a case report. Circulation J 66:977–980

    Google Scholar 

  289. Tedeschi A, Liraghi L, Giannini S et al (2002) High-dose intravenous immunoglobulin in the treatment of acute myocarditis. A case report and review of the literature. J Intern Med 251:169–173

    PubMed  CAS  Google Scholar 

  290. Tsai YG, Ou TY, Wang CC et al (2001) Intravenous gamma-globulin therapy in myocarditis complicated with complete heart block: report of one case. Chung-Hua Min Kuo Hsiao Erh Ko I Hsueh Hui Ts Chih 42:311–313

    CAS  Google Scholar 

  291. Shioji K, Kishimoto C, Sasyama S (2000) Immunoglobulin therapy for acute myocarditis. Respiration&Circulation 48(11):1133–1139

    CAS  Google Scholar 

  292. Takada H, Kishimoto C, Hiraoka Y (1995) Therapy with immunoglobulin suppresses myocarditis in a murine coxsackievirus B3 model—antiviral and anti-inflammatory effects. Circulation 92(6):1604–1611

    PubMed  CAS  Google Scholar 

  293. Nigro G, Bastianon V, Coloridi V et al (2000) Human parvovirus B19 infection in infancy associated with acute and chronic lymphocytic myocarditis and high cytokine levels: report of 3 cases and review. Clin Infect Dis 31:65–69

    PubMed  CAS  Google Scholar 

  294. Dennert R, Velthuis S, Schalla S, Eurlings L, van Suylen R-J, van Paassen P, Tervaert JWC, Wolffs P, Goossens VJ, Bruggeman C, Waltenberger J, Crijns HJ, Heymans S (2010) Intravenous immunoglobulin therapy for patients with idiopathic cardiomyoapthy and endomyocardial biopsy-proven high PVB19 viral load. Antiviral Ther 15:193–201

    CAS  Google Scholar 

  295. Wang C, Luf FL, Wu M et al (2004) Fatal coxsackievirus A16 infection. Pediatr Infect Dis J 23:275–276

    PubMed  Google Scholar 

  296. Klugman D, Berger JT, Sable CA, He J, Khandelwal SG, Sionim AD (2009) Pediatric patients hospitalized with myocarditis: a multi-institutional analysis. Pediatr Cardiol 31:222–228

    Google Scholar 

  297. Maisch B, Pankuweit S, Funck R, Koelsch S (2004) Effective CMV hyperimmunoglobulin treatment in CMV myocarditis—a controled treatment trial. Eur Heart J 25:Abstract Suppl:114,P674.abstract

  298. Alter P, Grimm W, Maisch B (2001) Varicella myocarditis in an adult. Heart 85:E2

    PubMed  CAS  Google Scholar 

  299. Wallukat G, Müller J, Hetzer R (2002) Specific removal of beta1-adrenergic autoantibodies from patients with idiopathic dilated cardiomyopathy. N Engl J Med 347:1806

    PubMed  Google Scholar 

  300. Wallukat G, Reinke P, Dorffel WV, Luther HP, Bestvater K, Felix SB, Baumann G (1996) Removal of autoantibodies in dilated cardiomyopathy by immunoadsorption. Int J Cardiol 54:191–195

    PubMed  CAS  Google Scholar 

  301. Felix SB, Staudt A, Dorffel WV, Stangl V, Merkel K, Pohl M, Docke WD, Morgera S, Neumayer HH, Wernecke KD, Wallukat G, Stangl K, Baumann G (2000) Hemodynamic effects of immunoadsorption and subsequent immunoglobulin substitution in dilated cardiomyopathy: three-month results from a randomized study. J Am Coll Cardiol 35:1590–1598

    PubMed  CAS  Google Scholar 

  302. Müller J, Wallukat G, Dandel M, Bieda H, Brandes K, Spiegelsberger S, Nissen E, Kunze R, Hetzer R (2000) Immunoglobulin adsorption in patients with idiopathic dilated cardiomyopathy. Circulation 101:385–391

    PubMed  Google Scholar 

  303. Staudt Y, Mobini R, Fu M, Felix SB, Staudt A (2003) ß1-Adrenoceptor antibodies induce apoptosis in adult isolated cardiomyocytes. Eur J Pharmacol 423:115–119

    Google Scholar 

  304. Felix SB, Staudt A, Landsberger M, Grosse Y, Stangl V, Spielhagen T, Wallukat G, Wernecke KD, Baumann G, Stangl K (2002) Removal of cardiodepressant antibodies in dilated cardiomyopathy by immunoadsorption. J Am Coll Cardiol 39:646–652

    PubMed  CAS  Google Scholar 

  305. Staudt A, Böhm M, Knebel F, Grosse Y, Bischoff C, Hummel A, Dahm JB, Borges A, Jochmann N, Wernecke KD, Wallukat G, Baumann G, Felix SB (2002) Potential role of autoantibodies belonging to the immunoglobulin G-3 subclass in cardiac dysfunction among patients suffering from dilated cardiomyopathy. Circulation 106:2448–2453

    PubMed  CAS  Google Scholar 

  306. Staudt A, Schaper F, Stangl V, Plagemann A, Böhm M, Merkel K, Wallukat G, Wernecke KD, Stangl K, Baumann G, Felix SB (2001) Immunohistological changes in dilated cardiomyopathy induced by immunoadsorption therapy and subsequent immunoglobulin substitution. Circulation 103:2681–2686

    PubMed  CAS  Google Scholar 

  307. Trimpert Christiane, Herda Lars R, Eckerle Lars G, Pohle Susanne, Müller Carina, Landsberger Martin, Felix Stephan B, Staudt Alexander (2010) Immunoadsorption in dilated cardiomyopathy: long-term reduction of cardiodepressant antibodies. Eur J Clin Invest 20:685–691

    Google Scholar 

  308. Kallwellis-Opara A, Staudt A, Trimpert C, Noutsias M, Kühl U, Pauschinger M, Schultheiss H-P, Grube M, Böhm M, Baumann G, Völker U, Kroemer HK, Felix SB (2007) Immunoadsorption and subsequent immunoglobulin substitution decreases myocardial gene expression of desmin in dilated cardiomyopathy. J Mol Med 85:1429–1435

    PubMed  CAS  Google Scholar 

  309. Fohlman J et al (1990) Vaccination of Balb/c mice against enteroviral mediated myocarditis. Vaccine 8:381–384

    PubMed  CAS  Google Scholar 

  310. Fohlmann J, Pauksen K, Morein B, Bjare U, Ilbäck N-G, Friman G (1993) High yield production of an inactivated Coxsackie B3 adjuvant vaccine with protective effect against experimental myocarditis. Scand J Infect Dis-Suppl 88:103–108

    Google Scholar 

  311. McKinlay MA (1993) Discovery and dvelopment of antipicornalaviral agents. Scand J Infect Dis 88:109–115

    CAS  Google Scholar 

  312. Ilbäck N-G, Wesslen L, Pauksen K, Stalhadnske T, Friman G, Fohlman J (1993) Effects oft he antiviral WIN 54954 and the immune modulator LS 2616 on cachectin/TNF and g-interferon responses during viral heart disease. Scand J Infect Dis 88:117–123

    Google Scholar 

  313. Kühl U, Pauschinger M, Schwimmbeck PL, Seeberg B, Lober C, Noutsias M, Poller W (2003) SchultheissHP. Interferon-beta treatment eliminates cardiotropic viruses and improves left ventriclar function in patients with myocardial persistence of viral genomes and left ventricular dysfunction. Circulation 107:2793–2798

    PubMed  Google Scholar 

  314. Schmidt-Lucke C, Spillmann F, Bock T, van Linthout S, Kühl U, Schultheiss HP, Tschoepe C (2010) Interferon-beta modulates endothelial damage in patients with cardiac persistance of parvovirus B19. J Infect Dis 201:936–945

    PubMed  Google Scholar 

  315. Schultheiss HP, Piper C, Sowade K, Karason JF, Kapp G, Groetzbach F, Waagstein E, Arbustini E, Siedentop H, Kühl U (2009) The effect of subcutaneous treatment with interferon-beta1b over 24 weeks on safety, virus elimination and clinical outcome in patients with chronic viral cardiomyopathy. Eur Heart J 30:1995–2002

    Google Scholar 

  316. Maisch B, Ristic AD, Pankuweit S (2002) Intrapericardial treatment of autoreactive pericardial effusion with triamcinolone; the way to avoid side effects of systemic corticosteroid therapy. Eur Heart J 23(19):1503–1508

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Bundesministerium für Wissenschaft und Forschung (BMBF) in the German Competence Net of Heart Failure(KNHI) for Prof. Dr. Bernhard Maisch and Sabine Pankuweit, by the Prof. Dr. Reinfried Pohl Stiftung, by the Marburg Cardiac Promotion Society (VFDK), and the UKGM Foundation for Prof. Dr. Bernhard Maisch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Maisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maisch, B., Pankuweit, S. Standard and etiology-directed evidence-based therapies in myocarditis: state of the art and future perspectives. Heart Fail Rev 18, 761–795 (2013). https://doi.org/10.1007/s10741-012-9362-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-012-9362-7

Keywords

Navigation