Skip to main content

Advertisement

Log in

Down-regulation of SETD6 protects podocyte against high glucose and palmitic acid-induced apoptosis, and mitochondrial dysfunction via activating Nrf2-Keap1 signaling pathway in diabetic nephropathy

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Diabetic nephropathy (DN), a serious complication of hyperglycemia, is one of the most common causes of end-stage renal disease (ESRD). Glomerular podocyte injury is a major mechanism that leads to DN. However, the mechanisms underlying podocyte injury are ambiguous. In this study, we sought to investigate the contribution of SET domain-containing protein 6 (SETD6) to the pathogenesis of podocyte injury induced by glucose (GLU) and palmitic acid (PA), as well as the underlying mechanisms. Our results showed that GLU and PA treatment significantly decreased SETD6 expression in mouse podocytes. Besides, Cell Counting Kit-8 (CCK-8) and flow cytometry assay demonstrated that silencing of SETD6 silence obviously enhanced cell viability, and suppressed apoptosis in GLU and PA-induced podocytes. We also discovered that downregulation of SETD6 suppressed GLU and PA-induced ROS generation and podocyte mitochondrial dysfunction. Nrf2-Keap1 signaling pathway was involved in the effect of SETD6 on mitochondrial dysfunction. Taken together, silencing of SETD6 protected mouse podocyte against apoptosis and mitochondrial dysfunction through activating Nrf2-Keap1 signaling pathway. Therefore these data provide new insights into new potential therapeutic targets for DN treatment.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

We declared that materials described in the manuscript, including all relevant raw data, will be freely available to any scientist wishing to use them for non-commercial purposes, without breaching participant confidentiality.

References

  • Adamska-Patruno E, Samczuk P, Ciborowski M, Godzien J, Pietrowska K, Bauer W, Gorska M, Barbas C, Kretowski A (2019) Metabolomics reveal altered postprandial lipid metabolism after a high-carbohydrate meal in men at high genetic risk of diabetes. J Nutr 149(6):915–922

    PubMed  Google Scholar 

  • Ahmad J (2015) Management of diabetic nephropathy: recent progress and future perspective. Diabetes Metab Syndr Clin Res Rev 9(4):343–358

    Google Scholar 

  • Belinda J, Mythili G, Andi Q, Ying F, Chuang PY, Cohen HW, Maria A, Thomas DB, He JC (2012) Dysregulated nephrin in diabetic nephropathy of type 2 diabetes: a cross sectional study. PLoS ONE 7(5):e36041

    Google Scholar 

  • Binda O, Sevilla A, LeRoy G, Lemischka IR, Garcia BA, Richard S (2013) SETD6 monomethylates H2AZ on lysine 7 and is required for the maintenance of embryonic stem cell self-renewal. Epigenetics 8(2):177–183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bommer J (2001) Attaining long-term survival when treating diabetic patients with ESRD by hemodialysis. Adv Ren Replace Ther 8(1):13–21

    CAS  PubMed  Google Scholar 

  • Bose M, Almas S, Prabhakar S (2017) Wnt signaling and podocyte dysfunction in diabetic nephropathy. J Investig Med Off Publ Am Feder Clin Res 65(8):1093

    Google Scholar 

  • Cai X, Bao L, Ren J, Li Y, Zhang Z (2016) Grape seed procyanidin B2 protects podocytes from high glucose-induced mitochondrial dysfunction and apoptosis via the AMPK-SIRT1-PGC-1alpha axis in vitro. Food Funct 7(2):805–815

    CAS  PubMed  Google Scholar 

  • Cao Z, Cooper ME (2011) Pathogenesis of diabetic nephropathy. J Diabetes Investig 2(4):243–247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang Y, Levy D, Horton JR, Peng J, Zhang X, Gozani O, Cheng X (2011) Structural basis of SETD6-mediated regulation of the NF-kB network via methyl-lysine signaling. Nucleic Acids Res 39(15):6380–6389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JJ, Xia XH, Wang LF, Jia YF, Nan P, Li L, Chang ZJ (2015) Identification and comparison of gonadal transcripts of testis and ovary of adult common carp Cyprinus carpio using suppression subtractive hybridization. Theriogenology 83(9):1416–1427

    CAS  PubMed  Google Scholar 

  • Chen A, Feldman M, Vershinin Z, Levy D (2016) SETD6 is a negative regulator of oxidative stress response. Biochimica et Biophysica Acta (BBA)s 1859(2):420–427

    CAS  Google Scholar 

  • Cheng D, Gao L, Su S, Sargsyan D, Wu R, Raskin I, Kong AN (2019) Moringa isothiocyanate activates Nrf2: potential role in diabetic nephropathy. AAPS J 21(2):31

    PubMed  PubMed Central  Google Scholar 

  • Choel LS, Hyeok S, Ji H, Ha LJ, Dong-Sub LS, Seung-Jae J, Hye KSeung, Ki K, Tae-Hyun KD, Hyun KJ (2009) Induction of heme oxygenase-1 protects against podocyte apoptosis under diabetic conditions. Kidney Int 76(8):838–848

    Google Scholar 

  • Du X, Yu J, Sun X, Qu S, Zhang H, Hu M, Yang S, Zhou P (2018) Impact of epigallocatechin3gallate on expression of nuclear factor erythroid 2related factor 2 and gammaglutamyl cysteine synthetase genes in oxidative stressinduced mouse renal tubular epithelial cells. Mol Med Rep 17(6):7952–7958

    CAS  PubMed  Google Scholar 

  • Eid AA, Yves G, Fagg BM, Rita M, Barnes JL, Karen B, Abboud HE (2009) Mechanisms of podocyte injury in diabetes: role of cytochrome P450 and NADPH oxidases. Diabetes 58(5):1201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Y, Yang Q, Yang Y, Gao Z, Ma Y, Zhang L, Liang W, Ding G (2019) Sirt6 suppresses high glucose-induced mitochondrial dysfunction and apoptosis in podocytes through AMPK activation. Int J Biol Sci 15(3):701

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ha TS, Choi JY, Park HY, Han GD (2013) Changes of podocyte p130Cas in diabetic conditions. J Nephrol 26(5):870–876

    PubMed  Google Scholar 

  • Herrera B, Álvarez AM, Sánchez A, Fernández M, Roncero C, Benito M, Fabregat I (2001) Reactive oxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor β in fetal hepatocytes. Faseb J 15(3):741

    CAS  PubMed  Google Scholar 

  • Hou-Yong D, Min Z, Lin-Li L, Ri-Ning T, Kun-Ling M, Dan L, Min W, Bi-Cheng L (2011) The roles of connective tissue growth factor and integrin-linked kinase in high glucose-induced phenotypic alterations of podocytes. J Cell Biochem 113(1):293–301

    Google Scholar 

  • Katalin S, Raff AC, Mario S, Bottinger EP (2006) Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55(1):225

    Google Scholar 

  • Khaled A, Abdul H, Ajay S, Sanjay M, Dan R (2012) Podocyte foot process effacement in postreperfusion allograft biopsies correlates with early recurrence of proteinuria in focal segmental glomerulosclerosis. Transplantation 96(3):1238–1244

    Google Scholar 

  • Korsmo-Haugen HK, Brurberg KG, Mann J, Aas AM (2019) Carbohydrate quantity in the dietary management of type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metab 21(1):15–27

    CAS  PubMed  Google Scholar 

  • Lin CL, Wang JY, Huang YT, Kuo YH, Surendran K, Wang FS (2006) Wnt/beta-catenin signaling modulates survival of high glucose-stressed mesangial cells. J Am Soc Nephrol 17(10):2812–2820

    CAS  PubMed  Google Scholar 

  • Liu Y, Xu Z, Ma F, Jia Y, Wang G (2018) Knockdown of TLR4 attenuates high glucose-induced podocyte injury via the NALP3/ASC/Caspase-1 signaling pathway. Biomed Pharmacother 107:1393–1401

    CAS  PubMed  Google Scholar 

  • Michele DV, Alessandra M, Maria A, Alois R, Gaetano S, Paola F (2003) Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes. Diabetes 52(4):1031–1035

    Google Scholar 

  • Mukherjee N, Cardenas E, Bedolla R, Ghosh R (2017) SETD6 regulates NF-kappaB signaling in urothelial cell survival: implications for bladder cancer. Oncotarget 8(9):15114–15125

    PubMed  PubMed Central  Google Scholar 

  • Mundel P, Reiser J (2010) Proteinuria: an enzymatic disease of the podocyte? Kidney Int 77(7):571–580

    CAS  PubMed  Google Scholar 

  • Nakai K, Fujii H, Kono K, Goto S, Kitazawa R, Kitazawa S, Hirata M, Shinohara M, Fukagawa M, Nishi S (2013) Vitamin D activates the Nrf2-Keap1 antioxidant pathway and ameliorates nephropathy in diabetic rats. Am J Hypertens 27(4):586–595

    PubMed  Google Scholar 

  • Palsamy P, Subramanian S (2011) Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2–Keap1 signaling. Biochimica et Biophysica Acta (BBA) 1812(7):719–731

    CAS  Google Scholar 

  • Qiao C, Ye W, Li S, Wang H, Ding X (2018) Icariin modulates mitochondrial function and apoptosis in high glucose-induced glomerular podocytes through G protein-coupled estrogen receptors. Mol Cell Endocrinol 473:146–155

    CAS  PubMed  Google Scholar 

  • Sanjay J, Laura DP, Masato H, Shreeram A, Rajshekhar C, Helen L (2011) Expression profiles of podocytes exposed to high glucose reveal new insights into early diabetic glomerulopathy. Lab Invest 91(4):488–498

    Google Scholar 

  • Sasaki K, Doi S, Nakashima A, Irifuku T, Yamada K, Kokoroishi K, Ueno T, Doi T, Hida E, Arihiro K (2016) Inhibition of SET domain-containing lysine methyltransferase 7/9 ameliorates renal fibrosis. J Am Soc Nephrol 27(1):203

    CAS  PubMed  Google Scholar 

  • Shen Y, Chen S, Zhao Y (2019) Sulfiredoxin-1 alleviates high glucose-induced podocyte injury though promoting Nrf2/ARE signaling via inactivation of GSK-3β. Biochem Biophys Res Commun 516(4):1137–1144

    CAS  PubMed  Google Scholar 

  • Shih AY, Imbeault S, Barakauskas V, Erb H, Jiang L, Li P, Murphy TH (2005) Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. J Biol Chem 280(24):22925–22936

    CAS  PubMed  Google Scholar 

  • Siu B, Saha J, Smoyer WE, Sullivan KA, Brosius FC (2006) Reduction in podocyte density as a pathologic feature in early diabetic nephropathy in rodents: prevention by lipoic acid treatment. Bmc Nephrol 7(1):6–6

    PubMed  PubMed Central  Google Scholar 

  • Tagawa A, Yasuda M, Kume S, Yamahara K, Nakazawa J, Chin-Kanasaki M, Araki H, Araki S-I, Koya D, Asanuma K (2016) Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes 65(3):755–767

    CAS  PubMed  Google Scholar 

  • Vershinin Z, Feldman M, Chen A, Levy D (2016) PAK4 methylation by SETD6 promotes the activation of the Wnt/β-catenin pathway. J Biol Chem 291(13):6786–6795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villeneuve LM, Kato M, Reddy MA, Wang M, Lanting L, Natarajan R (2010) Enhanced levels of microRNA-125b in vascular smooth muscle cells of diabetic db/db mice lead to increased inflammatory gene expression by targeting the histone methyltransferase Suv39h1. Diabetes 59(11):2904–2915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Dai C, Li Y, Liu Y (2011) Canonical Wnt/β-catenin signaling mediates transforming growth factor-β1-driven podocyte injury and proteinuria. Kidney Int 80(11):1159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Li C, Peng H, Ye Z, Zhang J, Liu X, Lou T (2014) Activation of the Nrf2-ARE pathway attenuates hyperglycemia-mediated injuries in mouse podocytes. Cell Physiol Biochem 34(3):891–902

    CAS  PubMed  Google Scholar 

  • Wang Y, Xue J, Li Y, Zhou X, Qiao S, Han D (2019) Telmisartan protects against high glucose/high lipid-induced apoptosis and insulin secretion by reducing the oxidative and ER stress. Cell Biochem Funct 37(3):161–168

    CAS  PubMed  Google Scholar 

  • Xu Z, Wei Y, Gong J, Cho H, Park JK, Sung E-R, Huang H, Wu L, Eberhart C, Handa JT (2014) NRF2 plays a protective role in diabetic retinopathy in mice. Diabetologia 57(1):204–213

    CAS  PubMed  Google Scholar 

  • Zhang S, Qiu X, Dong S, Zhou L, Zhu Y, Wang M, Jin L (2019) MicroRNA-770-5p is involved in the development of diabetic nephropathy through regulating podocyte apoptosis by targeting TP53 regulated inhibitor of apoptosis 1. Eur Rev Med Pharmacol Sci 23(3):1248–1256

    PubMed  Google Scholar 

Download references

Funding

The study was approved by Shaanxi Provincial Health and Family Planning Commission Scientific Research Fund (2016D018), the National Natural Sciences Foundation of China (81473010) and Shaanxi Province Key Research and Development Project fund (2018SF-173).

Author information

Authors and Affiliations

Authors

Contributions

XW, CXH and RL conceived and designed the study, and revised the draft; QLL and SW contributed to the acquisition, analyses, and interpretation of data; XW, QLL, DQK and ZL performed the cell culture and transfection experiments; XW, QLL, and YFG designed the experiments, performed data analyses, and drafted the manuscript. All authors contributed to writing the manuscript, reviewed and approving the final version. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.

Corresponding authors

Correspondence to Rui Liu or Chunxu Hai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (RAR 367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, Q., Kong, D. et al. Down-regulation of SETD6 protects podocyte against high glucose and palmitic acid-induced apoptosis, and mitochondrial dysfunction via activating Nrf2-Keap1 signaling pathway in diabetic nephropathy. J Mol Hist 51, 549–558 (2020). https://doi.org/10.1007/s10735-020-09904-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-020-09904-6

Keywords

Navigation